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Spiking Neural Networks (SNNs)
Brain-inspired Neural Networks

Low energy consumption

Resource-constrained scenario

Autonomous Driving Augmented Reality

Image credit: https://www.smartcitiesworld.net/opinions/driving-autonomous-vehicles-forward-with-intelligent-infrastructure
https://gazeintelligence.com/eye-tracking-solutions

https://www.smartcitiesworld.net/opinions/driving-autonomous-vehicles-forward-with-intelligent-infrastructure
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Computation in SNNs

Similar to DNN computation

Difference: Binary Spike Input
◦ Inherent sparsity: BitSparsity
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Is BitSparsity Enough? 
BitSparsity: Does not fully harness the potential sparsity in SNNs

New sparsity opportunities: Product Sparsity (ProSparsity)

BitSparsity in Inner Product

2 Ops + 3 Ops = 5 Ops

ProSparsity in Inner Product

2 Ops                             + 1 Ops = 3 Ops
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Product Sparsity (ProSparsity)
Leverage the similarities between binary rows to skip operations

Two types of spatial relationship between rows

Partial Match (PM)
𝑺𝟏 ⊂ 𝑺𝟒, 

𝑺𝟏 = 𝟎, 𝟑 , 𝑺𝟒 = 𝟎, 𝟏, 𝟑

Row4 reuses result of Row1

Save 2 OPs

Exact Match (EM)
𝑺𝟒 = 𝑺𝟓, 

𝑺𝟏 = 𝟎, 𝟏, 𝟑 , 𝑺𝟒 = 𝟎, 𝟏, 𝟑

Row5 reuses result of Row4

Save 3 OPs

Spiking GeMM
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Temporal order in ProSparsity
Define temporal relationship within spatial relationships

Specific temporal order has to be followed in execution

Partial Match (PM) Exact Match (EM)

Prefix

Suffix

Prefix

Suffix
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Effect of ProSparsity
Reduce Ops significantly

Num Ops reduced by 3.6x on Spiking ResNet-18

14 OPs 6 OPs Computation process
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Challenges in ProSparsity
Spike activation is dynamic

Generate ProSparsity on the fly

Detect spatial and temporal 
relationships

Generate temporal order
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Solution to Challenges
Efficiently generates ProSparsity on the fly

Fast Relationship 
Detection

TCAM 

Efficient Temporal Order 
Generation

Popcounts (number of ones) 
as temporal order
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Architecture Overview
An architecture generate and utilize ProSparsity

The main component: ProSparsity Processing Unit (PPU)
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Detector
Detect a prefix for a suffix

◦ 1. Find subset of a suffix row

◦ 2. Get the largest subset

◦ 3. The largest subset as prefix
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Pruner
Generate ProSparsity

◦ 1. Get suffix and prefix row

◦ 2. Perform bit-wise XOR

◦ 3. Get ProSparsity for suffix
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Dispatcher
Generate Temporal Order

◦ 1. Get Popcount for each row

◦ 2. Sort according to popcount

◦ 3. Issue to Processor in sorted order
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Processor
Perform matrix computation

◦ 1. Get prefix result value

◦ 2. Load weight according to ProSparsity

◦ 3. Accumulate weight

◦ 4. Store output value
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Pipeline Scheduling
Tile-wise pipeline to maximize Processor utilization
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Tiling Exploration
More rows per tile make ProSparsity better, but higher overhead

Number of cols needs to be selected carefully

0%

5%

10%

15%

20%

1 2 3 4 5 6 7

0%

5%

10%

15%

20%

1 2 3 4 5 6

Density of ProSparsity Density of BitSparsity

(a) (b)Latency Density DensityLatency

Number of Rows per tile Number of cols per tile



Center of Computational Evolutionary Intelligence (CEI) 22

Evaluation Baseline and Tools

Methods Type Sparsity

Eyeriss DNN accelerator Dense

A100 GPU Dense

PTB (HPCA‘22) SNN accelerator BitSparsity

SATO (DAC’22) SNN accelerator BitSparsity

MINT (ASP-DAC’24) SNN accelerator BitSparsity

Stellar (HPCA‘24) SNN accelerator BitSparsity

Prosperity (Ours) SNN accelerator ProSparsity

Tools

Synopsys Design 
Compiler

Logic synthesis

CACTI Buffer simulation

DRAMsim3 DRAM simulation
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Performance and Energy
Compared with baselines (DNN accelerator, GPU, SNN accelerators) 

on various SNN models and datasets
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Performance and Energy
Outperform GPU and all accelerators, 7.4x speedup and 8.0x 

energy efficiency over PTB (HPCA’22) 
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Demonstrating ProSparsity
ProSparsity on a spiking transformer model
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Takeaways
ProSparsity: A sparsity paradigm for SNN that leverage similarities 

between rows to remove the redundant computations.

Our proposed architecture: Prosperity, addresses the challenges in 
ProSparsity and achieve significant speedup over state-of-the-art 
accelerators
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Thanks & QA

Welcome to use our open-source code at

https://github.com/dubcyfor3/Prosperity

https://github.com/dubcyfor3/Prosperity
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