

Prosperity: Accelerating Spiking Neural Networks via Product Sparsity

Chiyue Wei, Cong Guo, Feng Cheng, Shiyu Li, Hao "Frank" Yang, Hai "Helen" Li, Yiran Chen

March 4th, 2025

Duke

Acknowledgement

Cong Guo Duke University

Hao "Frank" Yang Johns Hopkins University

Feng Cheng Duke University

Hai "Helen" Li Duke University

Shiyu Li Duke University

Yiran Chen

Duke University

Contents

II Background & Motivation

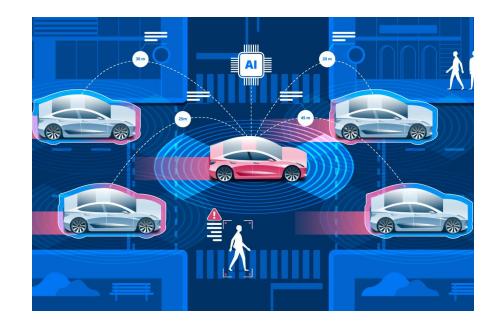
Product Sparsity

Prosperity Architecture

Results

Spiking Neural Networks (SNNs)

- Brain-inspired Neural Networks
- Low energy consumption
- Resource-constrained scenario



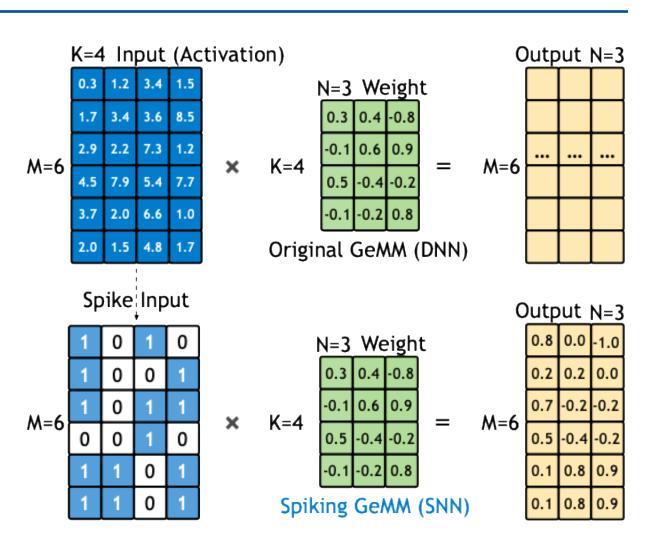
Autonomous Driving

Augmented Reality

Computation in SNNs

Similar to DNN computation

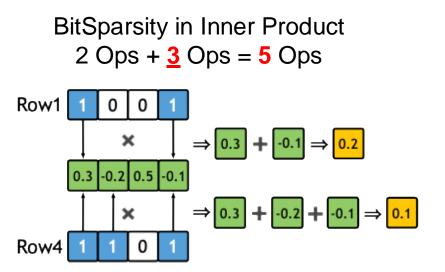
Inherent sparsity: BitSparsity

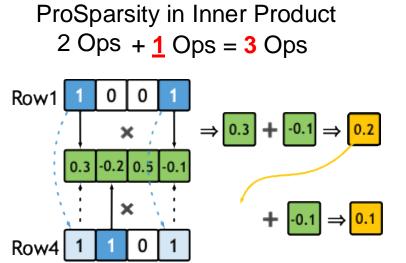


Is BitSparsity Enough?

BitSparsity: Does not fully harness the potential sparsity in SNNs

II New sparsity opportunities: Product Sparsity (ProSparsity)





Contents

Background & Motivation

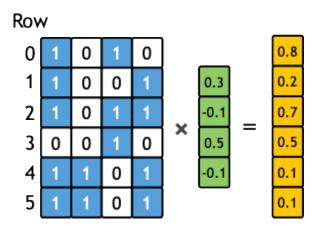
II Product Sparsity

Prosperity Architecture

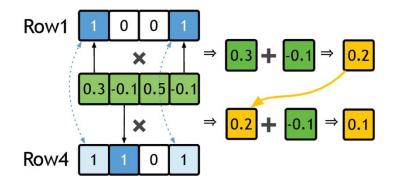
Results

Product Sparsity (ProSparsity)

- II Leverage the similarities between binary rows to skip operations
- II Two types of spatial relationship between rows



Spiking GeMM



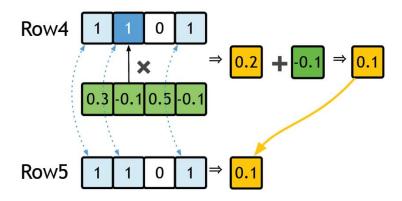
Partial Match (PM)

$$S_1 \subset S_4$$
,

$$S_1 = \{0, 3\}, S_4 = \{0, 1, 3\}$$

Row4 reuses result of Row1

Save 2 OPs



Exact Match (EM)

$$S_4=S_5$$

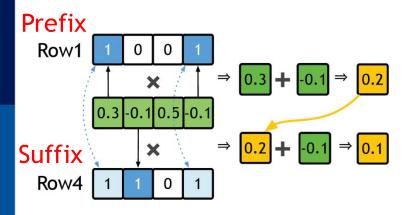
$$S_1 = \{0, 1, 3\}, S_4 = \{0, 1, 3\}$$

Row5 reuses result of Row4

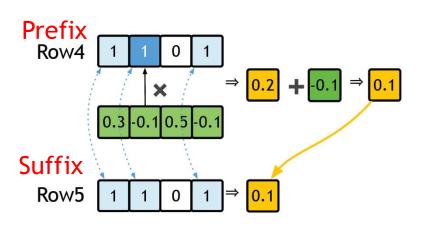
Save 3 OPs

Temporal order in ProSparsity

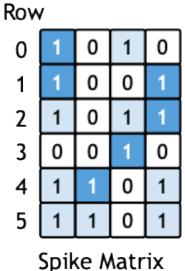
- **II** Define temporal relationship within spatial relationships
- **II** Specific temporal order has to be followed in execution

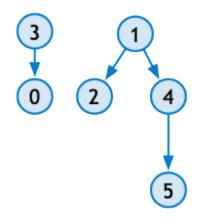


Partial Match (PM)



Exact Match (EM)

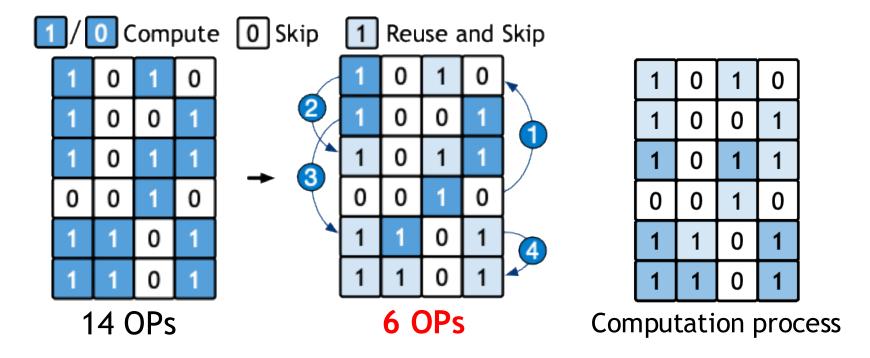




ProSparsity Forest

Effect of ProSparsity

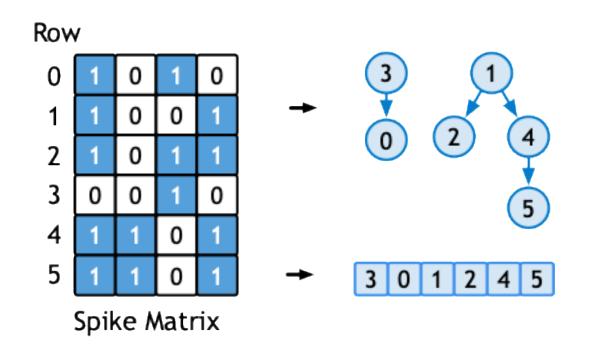
Reduce Ops significantly



II Num Ops reduced by 3.6x on Spiking ResNet-18

Challenges in ProSparsity

- Spike activation is dynamic
- II Generate ProSparsity on the fly



Detect spatial and temporal relationships

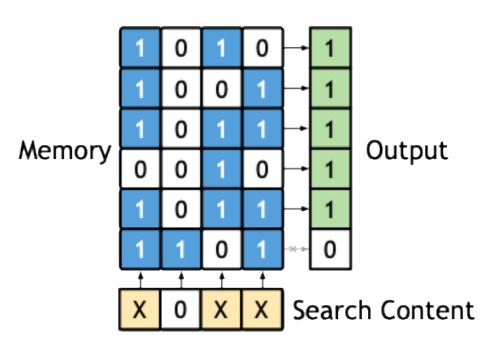
Generate temporal order

Solution to Challenges

Efficiently generates ProSparsity on the fly

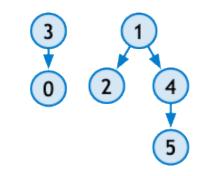
Fast Relationship Detection

TCAM

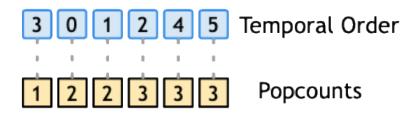


Efficient Temporal Order Generation

Popcounts (number of ones) as temporal order



ProSparsity Forsest



Contents

Background & Motivation

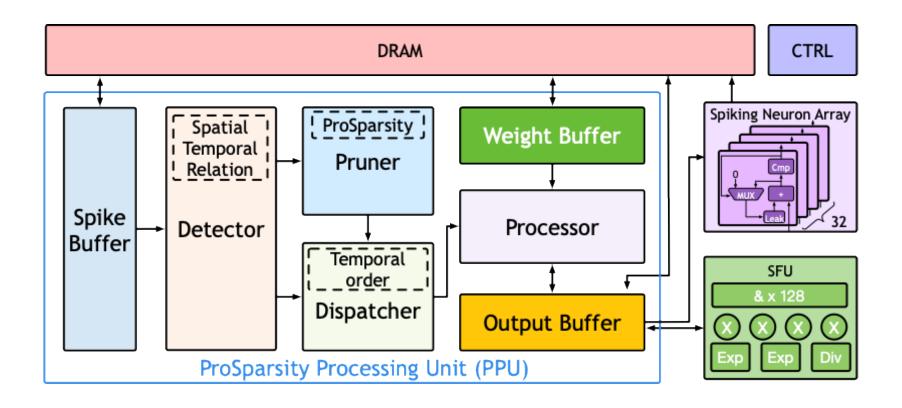
Product Sparsity

II Prosperity Architecture

Results

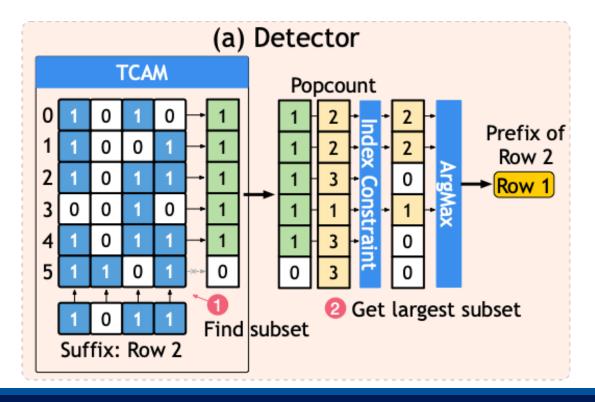
Architecture Overview

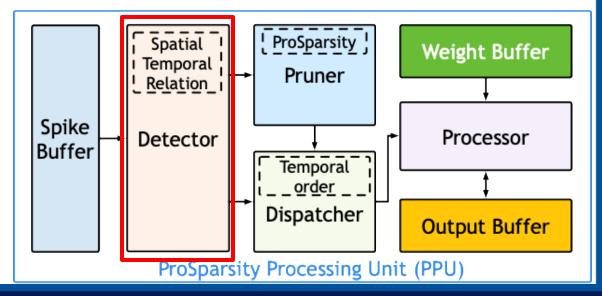
- II An architecture generate and utilize ProSparsity
- II The main component: ProSparsity Processing Unit (PPU)



Detector

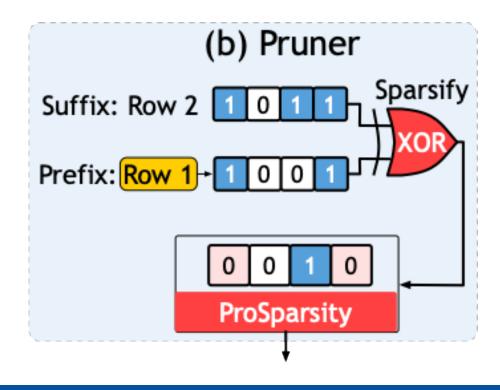
- Detect a prefix for a suffix
 - 1. Find subset of a suffix row
 - 2. Get the largest subset
 - 3. The largest subset as prefix

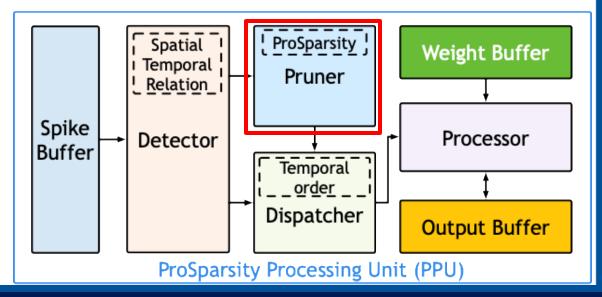




Pruner

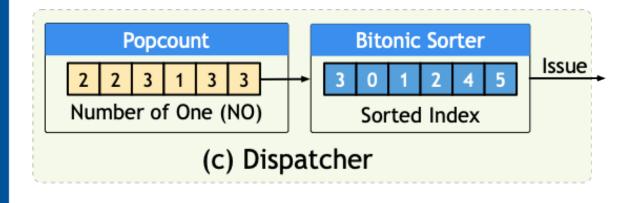
- II Generate ProSparsity
 - 1. Get suffix and prefix row
 - 2. Perform bit-wise XOR
 - 3. Get ProSparsity for suffix





Dispatcher

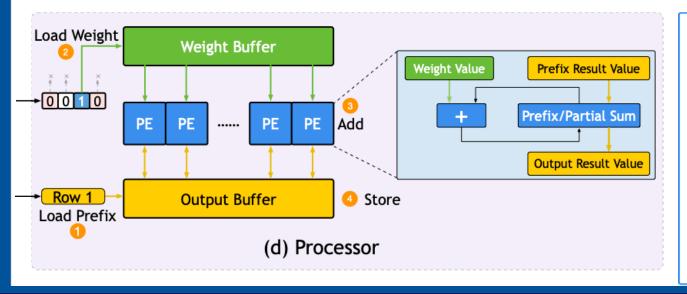
- II Generate Temporal Order
 - 1. Get Popcount for each row
 - 2. Sort according to popcount
 - 3. Issue to Processor in sorted order

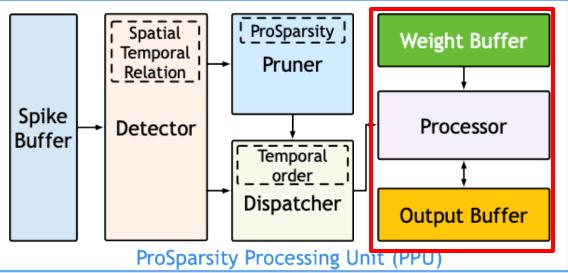




Processor

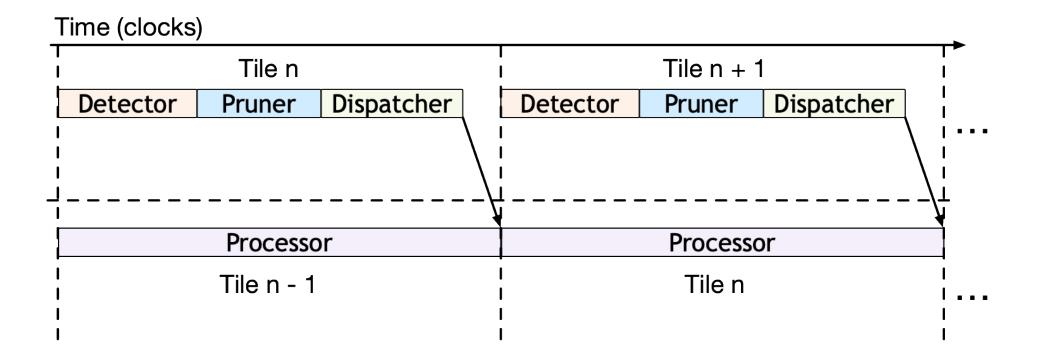
- Perform matrix computation
 - 1. Get prefix result value
 - 2. Load weight according to ProSparsity
 - 3. Accumulate weight
 - 4. Store output value





Pipeline Scheduling

II Tile-wise pipeline to maximize Processor utilization



Contents

Background & Motivation

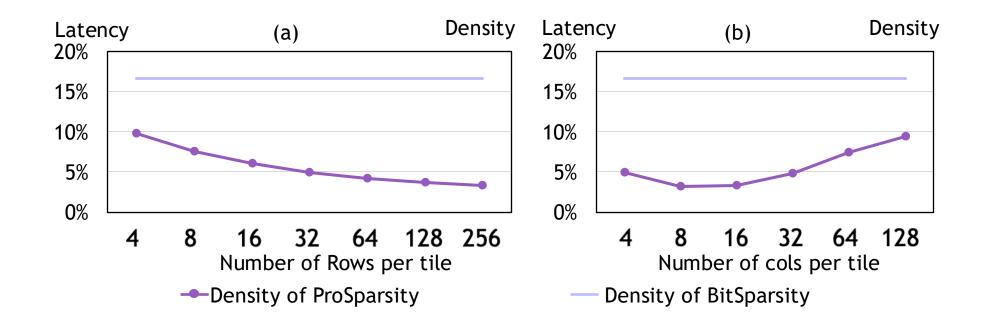
Product Sparsity

Prosperity Architecture

II Results

Tiling Exploration

- III More rows per tile make ProSparsity better, but higher overhead
- Number of cols needs to be selected carefully



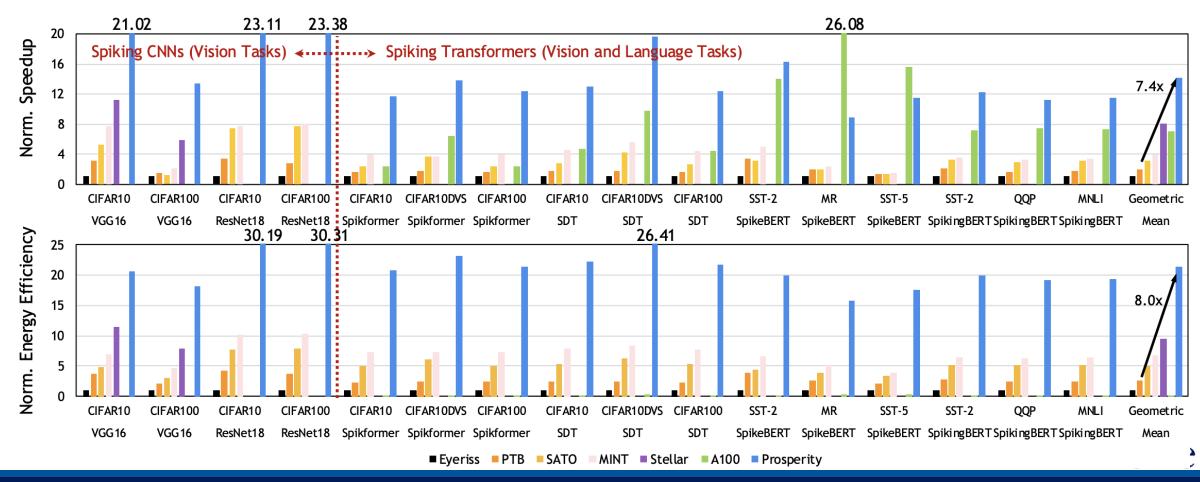
Evaluation Baseline and Tools

Methods	Туре	Sparsity
Eyeriss	DNN accelerator	Dense
A100	GPU	Dense
PTB (HPCA'22)	SNN accelerator	BitSparsity
SATO (DAC'22)	SNN accelerator	BitSparsity
MINT (ASP-DAC'24)	SNN accelerator	BitSparsity
Stellar (HPCA'24)	SNN accelerator	BitSparsity
Prosperity (Ours)	SNN accelerator	ProSparsity

Tools	
Synopsys Design Compiler	Logic synthesis
CACTI	Buffer simulation
DRAMsim3	DRAM simulation

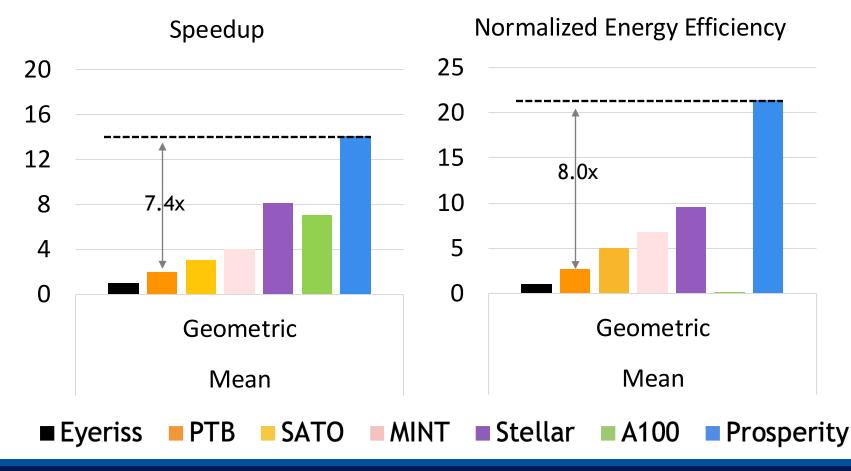
Performance and Energy

Compared with baselines (DNN accelerator, GPU, SNN accelerators) on various SNN models and datasets



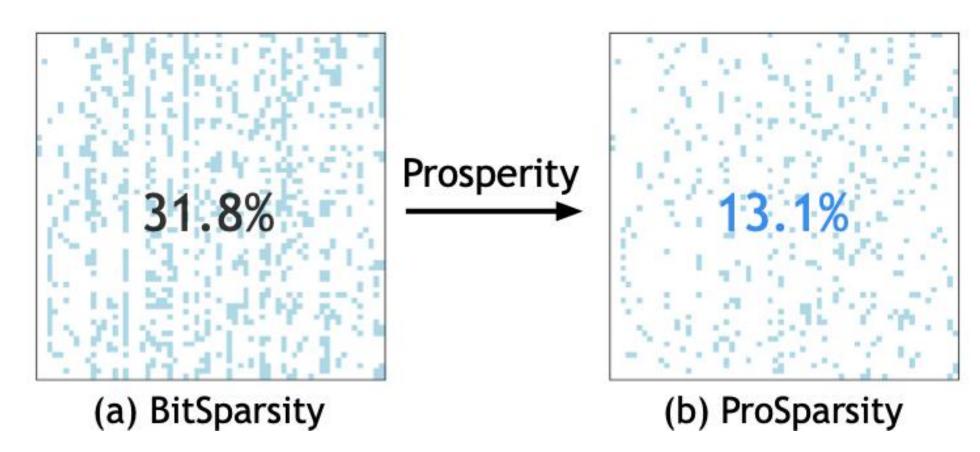
Performance and Energy

Dutperform GPU and all accelerators, 7.4x speedup and 8.0x energy efficiency over PTB (HPCA'22)



Demonstrating ProSparsity

ProSparsity on a spiking transformer model



Takeaways

II ProSparsity: A sparsity paradigm for SNN that leverage similarities between rows to remove the redundant computations.

DOUR proposed architecture: Prosperity, addresses the challenges in ProSparsity and achieve significant speedup over state-of-the-art accelerators

Thanks & QA

Welcome to use our open-source code at

https://github.com/dubcyfor3/Prosperity

