
Prosperity: Accelerating Spiking
Neural Networks via Product Sparsity

Chiyue Wei, Cong Guo, Feng Cheng, Shiyu Li, Hao “Frank” Yang, Hai
“Helen” Li, Yiran Chen

March 4th, 2025



Center of Computational Evolutionary Intelligence (CEI) 2

Acknowledgement

Cong Guo
Duke University

Feng Cheng
Duke University

Shiyu Li
Duke University

Hao “Frank” Yang
Johns Hopkins University

Hai “Helen” Li
Duke University

Yiran Chen
Duke University



Center of Computational Evolutionary Intelligence (CEI) 3

Contents

Background & Motivation

Product Sparsity

Prosperity Architecture

Results



4

Spiking Neural Networks (SNNs)
Brain-inspired Neural Networks

Low energy consumption

Resource-constrained scenario

Autonomous Driving Augmented Reality

Image credit: https://www.smartcitiesworld.net/opinions/driving-autonomous-vehicles-forward-with-intelligent-infrastructure
https://gazeintelligence.com/eye-tracking-solutions

https://www.smartcitiesworld.net/opinions/driving-autonomous-vehicles-forward-with-intelligent-infrastructure


Center of Computational Evolutionary Intelligence (CEI) 5

Computation in SNNs

Similar to DNN computation

Difference: Binary Spike Input
◦ Inherent sparsity: BitSparsity



Center of Computational Evolutionary Intelligence (CEI) 6

Is BitSparsity Enough? 
BitSparsity: Does not fully harness the potential sparsity in SNNs

New sparsity opportunities: Product Sparsity (ProSparsity)

BitSparsity in Inner Product

2 Ops + 3 Ops = 5 Ops

ProSparsity in Inner Product

2 Ops                             + 1 Ops = 3 Ops



Center of Computational Evolutionary Intelligence (CEI) 7

Contents

Background & Motivation

Product Sparsity

Prosperity Architecture

Results



Center of Computational Evolutionary Intelligence (CEI) 8

Product Sparsity (ProSparsity)
Leverage the similarities between binary rows to skip operations

Two types of spatial relationship between rows

Partial Match (PM)
𝑺𝟏 ⊂ 𝑺𝟒, 

𝑺𝟏 = 𝟎, 𝟑 , 𝑺𝟒 = 𝟎, 𝟏, 𝟑

Row4 reuses result of Row1

Save 2 OPs

Exact Match (EM)
𝑺𝟒 = 𝑺𝟓, 

𝑺𝟏 = 𝟎, 𝟏, 𝟑 , 𝑺𝟒 = 𝟎, 𝟏, 𝟑

Row5 reuses result of Row4

Save 3 OPs

Spiking GeMM



Center of Computational Evolutionary Intelligence (CEI) 9

Temporal order in ProSparsity
Define temporal relationship within spatial relationships

Specific temporal order has to be followed in execution

Partial Match (PM) Exact Match (EM)

Prefix

Suffix

Prefix

Suffix



Center of Computational Evolutionary Intelligence (CEI) 10

Effect of ProSparsity
Reduce Ops significantly

Num Ops reduced by 3.6x on Spiking ResNet-18

14 OPs 6 OPs Computation process



Center of Computational Evolutionary Intelligence (CEI) 11

Challenges in ProSparsity
Spike activation is dynamic

Generate ProSparsity on the fly

Detect spatial and temporal 
relationships

Generate temporal order



Center of Computational Evolutionary Intelligence (CEI) 12

Solution to Challenges
Efficiently generates ProSparsity on the fly

Fast Relationship 
Detection

TCAM 

Efficient Temporal Order 
Generation

Popcounts (number of ones) 
as temporal order



Center of Computational Evolutionary Intelligence (CEI) 13

Contents

Background & Motivation

Product Sparsity

Prosperity Architecture

Results



Center of Computational Evolutionary Intelligence (CEI) 14

Architecture Overview
An architecture generate and utilize ProSparsity

The main component: ProSparsity Processing Unit (PPU)



Center of Computational Evolutionary Intelligence (CEI) 15

Detector
Detect a prefix for a suffix

◦ 1. Find subset of a suffix row

◦ 2. Get the largest subset

◦ 3. The largest subset as prefix



Center of Computational Evolutionary Intelligence (CEI) 16

Pruner
Generate ProSparsity

◦ 1. Get suffix and prefix row

◦ 2. Perform bit-wise XOR

◦ 3. Get ProSparsity for suffix



Center of Computational Evolutionary Intelligence (CEI) 17

Dispatcher
Generate Temporal Order

◦ 1. Get Popcount for each row

◦ 2. Sort according to popcount

◦ 3. Issue to Processor in sorted order



Center of Computational Evolutionary Intelligence (CEI) 18

Processor
Perform matrix computation

◦ 1. Get prefix result value

◦ 2. Load weight according to ProSparsity

◦ 3. Accumulate weight

◦ 4. Store output value



Center of Computational Evolutionary Intelligence (CEI) 19

Pipeline Scheduling
Tile-wise pipeline to maximize Processor utilization



Center of Computational Evolutionary Intelligence (CEI) 20

Contents

Background & Motivation

Product Sparsity

Prosperity Architecture

Results



Center of Computational Evolutionary Intelligence (CEI) 21

Tiling Exploration
More rows per tile make ProSparsity better, but higher overhead

Number of cols needs to be selected carefully

0%

5%

10%

15%

20%

1 2 3 4 5 6 7

0%

5%

10%

15%

20%

1 2 3 4 5 6

Density of ProSparsity Density of BitSparsity

(a) (b)Latency Density DensityLatency

Number of Rows per tile Number of cols per tile



Center of Computational Evolutionary Intelligence (CEI) 22

Evaluation Baseline and Tools

Methods Type Sparsity

Eyeriss DNN accelerator Dense

A100 GPU Dense

PTB (HPCA‘22) SNN accelerator BitSparsity

SATO (DAC’22) SNN accelerator BitSparsity

MINT (ASP-DAC’24) SNN accelerator BitSparsity

Stellar (HPCA‘24) SNN accelerator BitSparsity

Prosperity (Ours) SNN accelerator ProSparsity

Tools

Synopsys Design 
Compiler

Logic synthesis

CACTI Buffer simulation

DRAMsim3 DRAM simulation



Center of Computational Evolutionary Intelligence (CEI) 23

Performance and Energy
Compared with baselines (DNN accelerator, GPU, SNN accelerators) 

on various SNN models and datasets



Center of Computational Evolutionary Intelligence (CEI) 24

Performance and Energy
Outperform GPU and all accelerators, 7.4x speedup and 8.0x 

energy efficiency over PTB (HPCA’22) 

0

4

8

12

16

20

Geometric

Mean

Speedup

0

5

10

15

20

25

Geometric

Mean

Normalized Energy Efficiency

7.4x

8.0x



Center of Computational Evolutionary Intelligence (CEI) 25

Demonstrating ProSparsity
ProSparsity on a spiking transformer model



Center of Computational Evolutionary Intelligence (CEI) 26

Takeaways
ProSparsity: A sparsity paradigm for SNN that leverage similarities 

between rows to remove the redundant computations.

Our proposed architecture: Prosperity, addresses the challenges in 
ProSparsity and achieve significant speedup over state-of-the-art 
accelerators



Center of Computational Evolutionary Intelligence (CEI) 27

Thanks & QA

Welcome to use our open-source code at

https://github.com/dubcyfor3/Prosperity

https://github.com/dubcyfor3/Prosperity

	Main
	Slide 1: Prosperity: Accelerating Spiking Neural Networks via Product Sparsity
	Slide 2: Acknowledgement
	Slide 3: Contents
	Slide 4: Spiking Neural Networks (SNNs)
	Slide 5: Computation in SNNs
	Slide 6: Is BitSparsity Enough? 
	Slide 7: Contents
	Slide 8: Product Sparsity (ProSparsity)
	Slide 9: Temporal order in ProSparsity
	Slide 10: Effect of ProSparsity
	Slide 11: Challenges in ProSparsity
	Slide 12: Solution to Challenges
	Slide 13: Contents
	Slide 14: Architecture Overview
	Slide 15: Detector
	Slide 16: Pruner
	Slide 17: Dispatcher
	Slide 18: Processor
	Slide 19: Pipeline Scheduling
	Slide 20: Contents
	Slide 21: Tiling Exploration
	Slide 22: Evaluation Baseline and Tools
	Slide 23: Performance and Energy
	Slide 24: Performance and Energy
	Slide 25: Demonstrating ProSparsity
	Slide 26: Takeaways
	Slide 27: Thanks & QA


