
DIMMining: Pruning-Efficient and Parallel Graph
Mining on Near-Memory-Computing

Guohao Dai∗†

Tsinghua University
BNRist, Beijing

China

Zhenhua Zhu∗

Tsinghua University
BNRist, Beijing

China

Tianyu Fu
Tsinghua University
BNRist, Beijing

China

Chiyue Wei
Tsinghua University
BNRist, Beijing

China

Bangyan Wang
University of California, Santa

Barbara, CA
USA

Xiangyu Li
Tsinghua University
BNRist, Beijing

China

Yuan Xie
University of California, Santa

Barbara, CA
USA

Huazhong Yang
Tsinghua University
BNRist, Beijing

China

Yu Wang†

Tsinghua University
BNRist, Beijing

China

ABSTRACT

Graph mining, which finds specific patterns in the graph, is

becoming increasingly important in various domains. We

point out that accelerating graph mining suffers from the

following challenges: (1) Heavy comparison for pruning:

Pruning technique is widely used to reduce search space in

graph mining. It applies constraints on vertex indices and

involves massive index comparisons. (2) Low parallelism of

set operations: The typical graph mining algorithms can be

expressed as a series of set operations between neighbors

of vertices, which suffer from low parallelism if vertices are

streaming to the computation units. (3) Heavy data transfer:

Graph mining needs to transfer intermediate data with two

orders of magnitude larger than the original data volume

between CPU and memory.

To tackle these challenges, we propose DIMMining with

four techniques from algorithm to architecture perspectives.

The Index Pre-comparison scheme is proposed for efficient

pruning. We introduce the self anchor and neighbor partition

to enable pre-comparison for vertex indices. Thus, we can

reduce comparisons during runtime. We propose a Flexible

BCSR (Bitmap with Compressed Sparse Row) format to

enable parallelism for set operations from the data structure

perspective, which works on continuous vertices without

memory space overheads. The Systolic Merge Array is

designed to further explore the parallelism on discontinuous

vertices from the architecture perspective. Then, we propose

a DIMM-based Near-Memory-Computing architecture,

which eliminates the large-volume data transfer between

∗Both authors contribute equally to this work.
†Corresponding: daiguohao1992@gmail.com, yu-wang@tsinghua.edu.cn.

the computation and the memory. Extensive experimental

results on real-world graphs show that DIMMining achieves

222.23× and 139.51× speedup compared with FPGAs and

CPUs, and 3.61× speedup over the state-of-the-art graph

mining architecture.

CCS CONCEPTS

• Computer systems organization → Architectures; •

Hardware →Memory and dense storage.

KEYWORDS

Graph Mining, Near-Memory-Computing, Systolic Merge

Array.

ACM Reference Format:

Guohao Dai, Zhenhua Zhu, Tianyu Fu, ChiyueWei, BangyanWang,

Xiangyu Li, Yuan Xie, Huazhong Yang, and YuWang. 2022. DIMMin-

ing: Pruning-Efficient and Parallel Graph Mining on Near-Memory-

Computing. In The 49th Annual International Symposium on Com-

puter Architecture (ISCA ’22), June 18–22, 2022, New York, NY, USA.

ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3470496.

3527388

1 INTRODUCTION

As we are now in the big data era, graph processing has

been widely used in many domains, such as social network

analysis [1–3], machine learning [4–6], recommendation

system [7–9], etc [10–18]. Previous studies have proposed

several systems and architectures to accelerate conventional

graph traversing problems [18–27]. Recent studies are paying

more attention to emerging graph mining problems, which

explore specific patterns in graphs [28–33].

130

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3470496.3527388&domain=pdf&date_stamp=2022-06-11

ISCA ’22, June 18–22, 2022, New York, NY, USA Guohao Dai, Zhenhua Zhu, et al.

Figure 1: Graph mining problems suffer from challenges of poor locality, low parallelism, and heavy data transfer.

We propose 4 solutions to tackle these challenges, illustrated on the right and detailed in corresponding sections.

Table 1: Graph Datasets, and the Time Ratio of Com-

parison Operation for Different Mining Tasks

Graph |V | |E | 3-CF 4-CF 5-CF 3-MC*

P2P(PP)[34] 11K 40K 25% 23% 23% 22%

Astro(AS)[34] 18K 0.2M 20% 27% 35% 19%

Mico(MI)[35] 0.1M 1.1M 24% 35% 45% 20%

Patents(PA)[36] 2.7M 14.0M 41% 41% 44% 33%

Youtube(YT)[37] 7.1M 57.1M 8% 6% 10% 38%

LiveJournal(LJ)[34] 4.8M 42.9M 20% 33% 53% 27%

*3-CF: 3 Clique Finding, 4-CF: 4 Clique Finding

5-CF: 5 Clique Finding, 3-MC: 3 Motif Counting

However, accelerating graph mining suffers from the fol-

lowing challenges: (1) Heavy comparison for pruning:

Pruning is widely used to reduce search space in graph min-

ing. It applies constraints on indices of symmetry and isomor-

phism vertices in the pattern, which involves massive vertex

index comparison operations. Table 1 shows the ratio of com-

parison time in different graphmining problems, which takes

up 6% to 53% of total runtime. (2) Low parallelism of set

operations: Graph mining performs set operations between

neighbors of vertices. There are two typical formats to rep-

resent neighbors in the graph, the Compressed Sparse Row

(CSR) and the bitmap. Using CSR enables streaming read

and write to the memory, but it is of low parallelism because

neighbors of different vertices need a sequential comparison.

The bitmap format exposes high parallelism because neigh-

bors are aligned and the set operations can be expressed as

bit vector logic operations. However, due to graph sparsity, it

is impossible to deploy bitmaps to the graph mining problem

because of large memory space and low memory utilization.

(3) Heavy Data Transfer: Graph mining requires repet-

itive access to graph data. Table 2 shows the comparison

between graph size and transferred data when processing a

3-CF (clique finding) problem. The data volume is measured

by running GraphPi [29] using likwid-perfctr [38] with de-

tailed setups in Sec. 6. As we can see, the transferred data

Table 2: Transferred Size for 3-CF

Graph |Graph | |Transferred Data | |Transferred Data |/ |Graph |

PP 240.6KB 6.042MB 26×

AS 1.660MB 86.73MB 52×

MI 9.028MB 420.4MB 47×

PA 147.3MB 64.92GB 451×

YT 485.2MB 74.86GB 158×

LJ 293.4MB 92.59GB 323×

volume is 26× to 451× larger than the original graph size,

leading to heavy data transfer between CPU and memory.

To tackle all these challenges and accelerate graph mining

problems, we propose DIMMining in this paper, which is

based on a Dual-Inline Memory Module (DIMM)-based Near-

Memory-Computing (NMC) architecture. Figure 1 shows

challenges and contributions proposed in DIMMining, in-

cluding:

• We introduce an index pre-comparison scheme to re-

duce the vertex index comparison for pruning during

runtime.We use the self anchor to label neighbors with

larger indices than itself for each vertex, and neigh-

bor partitions to divide neighbors into ordered subsets.

Then, indices can be pre-compared, and comparison

operations can be reduced during runtime, achieving

up to 2.01× speedup.

• We propose a flexible BCSR (bitmap with CSR) format

to enable parallel set operations. The flexible BCSR

format encodes continuous neighbors using a variable-

length bitmap, which combines the advantages of set

operation parallelism of bitmap and memory utiliza-

tion of CSR. BCSR optimizes index encoding and saves

up to 40.6%memory space over CSR. BCSR also achieves

up to 2.30× higher parallelism over CSR, leading to an

average of 1.25× speedup on CPUs.

• We propose the systolic merge array architecture to

explore the parallelism for streaming set operations

131

DIMMining: Pruning-Efficient and Parallel Graph Mining on Near-Memory-Computing ISCA ’22, June 18–22, 2022, New York, NY, USA

for u0 // we assign vi to ui for each i
for u1 N(u0)
for u2 N(u0) ∩ N(u1)
for u3 N(u0) ∩ N(u1) - N(u2)
// Find a valid pattern
counter++;

Figure 2: Overview of the graphmining problem. (a) An

example graph and the mining pattern. (b) DFS-based

mining algorithm proposed in Automine [28].

on discontinuous indices. Compared with the conven-

tional ordered queue and crossbar architectures, the

systolic merge array achieves 7.00× and 7.37× higher

throughput for set operations against ordered queue

and crossbar, respectively.

• We propose DIMM-based Near-Memory-Computing

architecture to alleviate heavy data transfer. Parallel

set operations are offloaded to the memory side during

runtime. Comprehensive experiments on real-world

graphs show that DIMMining achieves 222.23× and

139.51× speedup compared with FPGAs and CPUs,

and 3.62× speedup against the state-of-the-art graph

mining architecture.

2 PRELIMINARIES

2.1 Problem Definition

The graph mining problem is to find a given pattern 𝐺 =
(𝑉 , 𝐸) in the input graph G = (V,E). Figure 2(a) shows
an example, where 𝑉 = {𝑣0, 𝑣1, 𝑣2, 𝑣3} and V = { 0©, ..., 7©}

For the graph in cyan and the pattern in blue, there are

three patterns in the graph, shown on the right. Typical

graph mining problems include Clique Finding (CF), Motif

Counting (MC), etc [28–30].

2.2 DFS-based Set-centric Graph Mining
Model

Recent graphmining systems such as Automine [28], GraphPi [29],

and GraphZero [30] adopt a DFS-based (Depth-first Search)

model for mining problems, where they enumerate embed-

dings in one branch before others are explored. The model

achieves less memory consumption and better performance

compared with previous systems using a BFS-based (Breadth-

first Search) model [39, 40]. A typical way to implement this

model is using a set-centric model, where new vertices are

calculated based on neighbor sets of explored vertices. Fig-

ure 2(b) shows an example of this DFS-based set-centric

graph mining model. The pattern in Figure 2(a) is first modi-

fied into a complete pattern (Figure 2(b) left). The red edge

represents there is no edge in the original pattern. Vertices in

the pattern are explored from 𝑣0 to 𝑣3, and the search range
of each vertex is based on the set intersection or subtraction

results of previous vertices’ neighbors. For the 𝑖-th for loop
(𝑖 > 1) in the pseudo-code of Figure 2(b), the search range of

vertex 𝑣𝑖−1 is a subset of V (vertices in G):

𝐺𝑒𝑡𝑆𝑒𝑡 (𝑢0, ..., 𝑢𝑖−2) =
⋂

𝑣𝑏 ∈𝑏𝑙𝑎𝑐𝑘

𝑁 (𝑢𝑏) −
⋃

𝑣𝑟 ∈𝑟𝑒𝑑

𝑁 (𝑢𝑟) (1)

In Equation (1), each pattern vertex 𝑣 𝑗 (0 ≤ 𝑗 < 𝑖 − 1) is

assigned to a certain graph vertex 𝑢 𝑗 in previous for loops.
The right side of the equation traverses 𝑣0, ..., 𝑣𝑖−2 and divides
them into two sets, 𝑏𝑙𝑎𝑐𝑘 and 𝑟𝑒𝑑 . A 𝑣 in the 𝑏𝑙𝑎𝑐𝑘/𝑟𝑒𝑑 set

represents there is a black/red edge (Figure 2(b) left) between

𝑣𝑖−1 and 𝑣 . 𝑁 (𝑢 𝑗) outputs the neighbor set of 𝑢 𝑗 in the graph

when 𝑣 𝑗 is assigned to 𝑢 𝑗 . Equation (1) generates a subset of

V for 𝑣𝑖−1 to traverse.

3 EFFICIENT PRUNINGWITH INDEX
PRE-COMPARISON

Previous researches propose pruning techniques to reduce

the search space in graph mining, while involving massive

comparison operations on vertex indices. We propose several

index pre-comparison techniques to reduce runtime com-

parison overheads and enable efficient pruning for graph

mining.

3.1 Pruning in Graph Mining

Pruning is a widely adopted optimization technique to re-

duce the search space in graph mining problems [29, 30]. The

motivation of pruning is to find symmetry and isomorphism

in the pattern and add constraints to vertex indices. Take the

pattern in Figure 2(a) as an example, we find that 𝑣0 and 𝑣1
are symmetrical in the pattern (so are 𝑣2 and 𝑣3). Thus, when
we find a valid pattern like (𝑣0, 𝑣1, 𝑣2, 𝑣3) = (1©, 5©, 2©, 6©),

we will also find other 3 valid patterns, i.e., (5©, 1©, 2©, 6©),

(1©, 5©, 6©, 2©), (5©, 1©, 6©, 2©), by permuting 𝑣0 with 𝑣1 and
𝑣2 with 𝑣3. Thus, to reduce the search space in Figure 2(b), pre-
vious designs introduce pruning by applying constraints on

indices for symmetrical vertices in the pattern. In Figure 3(a),

the constraints include 𝑢0 < 𝑢1 and 𝑢2 < 𝑢3 (recall that
𝑣𝑖 is assigned to 𝑢𝑖). Then, only the pattern (𝑣0, 𝑣1, 𝑣2, 𝑣3) =
(1©, 5©, 2©, 6©) is searched, while other three patterns can be

directly induced.

Such a pruning technique requires comparison on vertex

indices during runtime. According to the profiling results in

Table 1, such a comparison operation accounts for up to 53%

of total execution time in typical mining problems, which is

inefficient when adopting the pruning technique.

132

ISCA ’22, June 18–22, 2022, New York, NY, USA Guohao Dai, Zhenhua Zhu, et al.

I0 I1 I2N(u0)
NI0(u0) NI1(u0) NI2(u0)

I0 I1 I2N(u1)
NI0(u1) NI1(u1) NI2(u1)

I0 I1 I2N(u2)
NI0(u2) NI1(u2) NI2(u2)

N(u0) u0 u0

Nleft(u0) Nright(u0)u0

for u0 //assign vi to ui for each i
for u1 N(u0), u0<u1

for u2 N(u0) ∩ N(u1)
for u3 N(u0)∩N(u1)-N(u2), u2<u3
// Find a valid pattern

counter++;

for u0 //assign vi to ui for each i
for u1 Nright(u0)

for u2 N(u0) ∩ N(u1)
for u3 N(u0) ∩ N(u1) - N(u2), u2 < u3

counter++;

for u0 //assign vi to ui for each i
for u1 Nright(u0)
for u2 N(u0) ∩ N(u1)
I = u2/#Vinterval ;//Determine u2’s interval (e.g., I1)
for u3 NI1(u0)∩NI1(u1)-NI1(u2), u2<u3
// Comparison reduction
counter++;

for u3 NI2(u0)∩NI2(u1)–NI2(u2)// Comparison free
counter++;

Figure 3: Efficient pruning with index pre-comparison.

(a) Constraints on symmetry and isomorphism vertices

in the pattern. (b) Using self anchor to eliminate index

comparison for connected vertices in the pattern. (c)

Using intervals to reduce comparison for disconnected

vertices in the pattern.

3.2 Index Pre-comparison

To tackle inefficient pruning caused by index comparison

during runtime, we point out that the constraints on vertex

indices can be pre-computed. Thus, the comparison opera-

tions can be reduced during runtime.

3.2.1 Self Anchor for Vertices Connected in the Pattern. The

main idea of the self anchor is that the index order con-

straint applied on two connected vertices will divide the

neighbor set of a vertex into two disjoint sets. For exam-

ple, we follow the constraint 𝑢0 < 𝑢1 in the second for
loop in Figure 3(a). When 𝑢1 traverses 𝑁 (𝑢0) in this loop,

we can divide 𝑁 (𝑢0) into two disjoint sets, 𝑁𝑙𝑒 𝑓 𝑡 (𝑢0) and
𝑁𝑟𝑖𝑔ℎ𝑡 (𝑢0), where 𝑁𝑙𝑒 𝑓 𝑡 (𝑢0) contains all 𝑢0’s neighbor with
smaller indices than𝑢0, and𝑁𝑟𝑖𝑔ℎ𝑡 (𝑢0) contains all𝑢0’s neigh-
bor with larger indices than 𝑢0 (𝑁𝑙𝑒 𝑓 𝑡 (𝑢0) ∩ 𝑁𝑟𝑖𝑔ℎ𝑡 (𝑢0) = ∅,

𝑁𝑙𝑒 𝑓 𝑡 (𝑢0) ∪ 𝑁𝑟𝑖𝑔ℎ𝑡 (𝑢0) = 𝑁 (𝑢0)). Then, 𝑢1 only needs to

traverse 𝑁𝑟𝑖𝑔ℎ𝑡 (𝑢0) (rather than whole 𝑁 (𝑢0)) with no com-
parison during runtime, shown in Figure 3(b).

The self anchor technique works for all index comparisons

applied on two vertices connected in the pattern. The neigh-

bor set of each vertex is divided into two sets in advance,

which can be easily applied to existing graph data formats.

For example, we can store an additional self anchor pointer

array to record the offset of the𝑁𝑟𝑖𝑔ℎ𝑡 set besides the row and

column array in a common Compressed Sparse Row (CSR)

format, causing𝑂 (|V|) memory overhead (|𝑉 | is the number

of vertices). Under this circumstance, the self anchor brings

15% storage overheads on average compared with original

graphs in Table 1.

3.2.2 Neighbor Partitions for Vertices Disconnected in the

Pattern. The self anchor is not always applicable because it

cannot handle the index comparison of two vertices discon-

nected in the pattern, which contains two cases. Here we

use two examples for demonstration:

• 𝑢3 ∈ 𝑁 (𝑢0) ∩𝑁 (𝑢1), 𝑢3 > 𝑢2: In this case, the neighbor
set of the compared vertex (i.e.,𝑢2) does not participate
in the set operations (𝑁 (𝑢0) ∩𝑁 (𝑢1)). The self anchor
of 𝑢0 (or 𝑢1) divide the neighbor set according to its
own index, which cannot be used to directly access

the sub-neighbor set with indices larger than 𝑢2.
• 𝑢3 ∈ 𝑁 (𝑢0) −𝑁 (𝑢2), 𝑢3 > 𝑢2: In this case, the neighbor
set of the compared vertex (𝑢2) is used as the subtra-
hend. Even if we can get 𝑁𝑟𝑖𝑔ℎ𝑡 (𝑢2) for subtraction, we
still need to filter out vertex indices larger than 𝑢2 in
the neighbor set of 𝑢0, which requires index compar-
isons.

To tackle these scenarios, we introduce the idea of interval

data structure to graph mining problems, which has been

widely used in conventional graph traverse problems [18, 20,

23, 24]. The main idea of introducing the interval is to divide

neighbor sets into several partitions, and the set operation

can be applied to partitions in a certain range rather than

applied on the whole set. Here we take the fourth for loop
in Figure 3(a) as an example. Vertices are divided into three

intervals, 𝐼0, 𝐼1, and 𝐼2. Thus neighbors of each vertex are also
divided into three subsets (e.g., 𝑁 (𝑢0) is divided into 𝑁𝐼0 (𝑢0),
𝑁𝐼1 (𝑢0), and 𝑁𝐼2 (𝑢0), where 𝑁𝐼𝑖 represents neighbors in the

𝑖-th interval). Then, we can modify the range of 𝑢3 in the
fourth for loop according to:

𝑁 (𝑢0) ∩ 𝑁 (𝑢1) − 𝑁 (𝑢2)

=[𝑁𝐼0 (𝑢0) ∩ 𝑁𝐼0 (𝑢1) − 𝑁𝐼0 (𝑢2)] (∈ 𝐼0)

∪[𝑁𝐼1 (𝑢0) ∩ 𝑁𝐼1 (𝑢1) − 𝑁𝐼1 (𝑢2)] (∈ 𝐼1)

∪[𝑁𝐼2 (𝑢0) ∩ 𝑁𝐼2 (𝑢1) − 𝑁𝐼2 (𝑢2)] (∈ 𝐼2)

(2)

Equation (2) can be derived from Equation (1).

133

DIMMining: Pruning-Efficient and Parallel Graph Mining on Near-Memory-Computing ISCA ’22, June 18–22, 2022, New York, NY, USA

Figure 4: Different formats to represent neighbors of the graph in Figure 2. (a) CSR: neighbors are stored using

the index in the column array. (b) Bitmap: all vertices are encoded with one bit. (c) Flexible BCSR (bitmap+CSR):

vertices are divided into groups, neighbors of a vertex are encoded with the group index using a key array (similar

to the column array in CSR), attached with a value array representing the bitmap in the group.

Proof. For ∀𝑖 ≠ 𝑗 , and ∀𝑢,𝑢 ′ ∈ V, we have 𝑁𝐼𝑖 (𝑢) ⊂ 𝐼𝑖
and 𝑁𝐼 𝑗 (𝑢

′) ⊂ 𝐼 𝑗 , thus 𝑁𝐼𝑖 (𝑢) ∩ 𝑁𝐼 𝑗 (𝑢
′) = ∅. Thus, when

vertices are divided into 𝑃 intervals, Equation (1) can be

modified into:⋂
𝑣𝑏∈𝑏𝑙𝑎𝑐𝑘

𝑁 (𝑢𝑏) −
⋃

𝑣𝑟 ∈𝑟𝑒𝑑

𝑁 (𝑢𝑟)

=
⋂

𝑣𝑏∈𝑏𝑙𝑎𝑐𝑘

(⋃
𝑖<𝑃

𝑁𝐼𝑖 (𝑢𝑏)

)
−

⋃
𝑣𝑟 ∈𝑟𝑒𝑑

(⋃
𝑖<𝑃

𝑁𝐼𝑖 (𝑢𝑟)

)

=

⎡⎢⎢⎢⎢⎣
⋃
𝑖<𝑃

	
�
⋂

𝑣𝑏∈𝑏𝑙𝑎𝑐𝑘

𝑁𝐼𝑖 (𝑢𝑏)
��
⎤⎥⎥⎥⎥⎦
⋃

⎡⎢⎢⎢⎢⎢⎣
⋃

∀𝑖,𝑗<𝑃,𝑖≠𝑗

	

�
⋂

𝑣𝑏,𝑣
′
𝑏
∈𝑏𝑙𝑎𝑐𝑘

(𝑁𝐼𝑖 (𝑢𝑏)
⋂

𝑁𝐼 𝑗 (𝑢
′
𝑏))

��
⎤⎥⎥⎥⎥⎥⎦ −

⋃
𝑖<𝑃

	
�
⋃

𝑣𝑟 ∈𝑟𝑒𝑑

𝑁𝐼𝑖 (𝑢𝑟)
��

=
⋃
𝑖<𝑃

[
⋂

𝑣𝑏∈𝑏𝑙𝑎𝑐𝑘

𝑁𝐼𝑖 (𝑢𝑏)] −
⋃
𝑖<𝑃

[
⋃

𝑣𝑟 ∈𝑟𝑒𝑑

𝑁𝐼𝑖 (𝑢𝑟)]

=
⋃
𝑖<𝑃

[
⋂

𝑣𝑏∈𝑏𝑙𝑎𝑐𝑘

𝑁𝐼𝑖 (𝑢𝑏) −
⋃

𝑣𝑟 ∈𝑟𝑒𝑑

𝑁𝐼𝑖 (𝑢𝑟)]

(3)

Thus, we get Equation (2), where the set operation can be

performed on each subset individually. �

We assume that 𝑢2 ∈ 𝐼1 (𝑣2 is assigned to 𝑢2) in the third
for loop. According to the constraint 𝑢2 < 𝑢3, the results in
the second line of Equation (2) can be dropped (∀𝑢 ∈ 𝐼0, we
have 𝑢2 > 𝑢, which does not satisfy the constraint), and all
results in the fourth line will be reserved (∀𝑢 ∈ 𝐼2, we have
𝑢2 < 𝑢, which meets the constraint). Only the results in the
third line require an index comparison between 𝑢2 and 𝑢3. In
this way, the number of comparison operations is bounded

by the size of an interval rather than the whole neighbor set,

shown in Figure 3(c). Similar to the self anchor technique,

we only need to store another 𝑃-1 pointers to distinguish
neighbors of each vertex into 𝑃 intervals. Thus the storage

overheads are still 𝑂 (|V|).

To reduce the storage overhead of neighbor partitions, we

further analyze the characteristics of memory access during

graph mining. Due to the power-law distribution[19] of ver-

tex degree (i.e., the number of neighbors), we observe that

the top 10% largest neighbor set takes up 44% of the neighbor

set access in 3-MC mining problems. Thus, we only apply

the neighbor partitions to the vertices with largest degrees.

For graphs in Table 2, applying neighbor partition onto 10%

vertices only poses 12% additional memory compared to the

graph size.

4 PARALLEL SET OPERATION IN
DIMMINING

There are two main set operations, intersection (INT) and

subtraction (DIFF), on two neighbor sets 𝐴 and 𝐵 in graph

mining. To explore parallelism in these set operations, we

introduce the flexible BCSR data format from the data struc-

ture perspective in Sec. 4.1, and the Systolic Merge Array

(SMA) from the hardware perspective in Sec. 4.2.

4.1 Flexible BCSR Format

The CSR and bitmap are two major formats to represent

a graph. Figure 4(a) and (b) show examples of these two

formats. In this example, because the graph contains eight

vertices, the bitmap format uses 8-bit for each vertex to rep-

resent its neighbors. The CSR format stores indices of neigh-

bors for each vertex using a column array, which is indexed

by a row array. The set operations on the bitmap format

are of high parallelism, because the neighbor with the same

index is aligned and can be executed using bitwise opera-

tions. However, due to the sparsity of graphs, the bitmap

format involves many “0”s and leads to inefficient memory

utilization. In contrast, the CSR format stores neighbors in

a compact way, leading to efficient memory utilization. But,

the parallelism of the CSR format is low because the neigh-

bors of different vertices are not aligned and need sequential

comparisons for set operations.

Neither bitmap nor CSR achieves both high memory uti-

lization and set operation parallelism. To benefit from the

advantages of both formats, we propose our flexible BCSR

(bitmap + CSR) format in Figure 4(c). In the flexible BCSR for-

mat, continuous vertices are first combined into a group. For

134

ISCA ’22, June 18–22, 2022, New York, NY, USA Guohao Dai, Zhenhua Zhu, et al.

Table 3: Memory space (Byte) comparison on different formats, (a+b) means (key bit + value bit)

Graph, G

Format Bitmap CSR BSR [41] Flexible BCSR Optimal Optimal BCSR

0+|𝑉 | 32+0 32+32 30+2 28+4 24+8 16+16 BCSR /CSR

PP 8.23E+06 2.41E+05 4.12E+05 2.28E+05 2.21E+05 2.15E+05 2.11E+05 2.11E+05 87.7%

AS 4.40E+07 1.66E+06 1.77E+06 1.46E+06 1.28E+06 1.12E+06 9.86E+05 9.86E+05 59.4%

MI 1.17E+09 9.03E+06 1.39E+07 8.35E+06 7.81E+06 7.43E+06 7.15E+06 7.15E+06 79.2%

PA 1.78E+12 1.47E+08 2.79E+08 1.44E+08 1.42E+08 1.41E+08 - 1.41E+08 95.7%

YT 6.30E+12 4.85E+08 8.18E+08 4.47E+08 4.24E+08 4.07E+08 - 4.07E+08 84.0%

LJ 2.00E+12 2.93E+08 4.47E+08 2.72E+08 2.56E+08 2.43E+08 - 2.43E+08 82.9%

example, two vertices with continuous indices form a group

in Figure 4(c). Then, the column array in the CSR format

turns into a key array, and each key in the array represents

a non-zero group index. The key array is also indexed by

a row array like CSR. Because there are multiple vertices

in a group, each element in the key array is attached with

a bitmap, representing whether a vertex in this group is a

neighbor of the source vertex. These bitmaps form a value

array in BCSR.

In our BCSR format, neighbors of a vertex are represented

with several 〈Key, Value〉 Pairs (KVPs). In these KVPs, the

key represents a group index, and the value represents a

bitmap. The flow for the set operation on the BCSR for-

mat can be described as a combined flow of bitmap and

CSR. To perform a set operation between neighbors of two

vertices using the flexible BCSR format, we first compare

keys to get groups with common indices. Then, the values

of these groups are processed according to the same rules

on the bitmap format. An example is shown on the right

of Figure 4(c). To calculate 𝑁 (0©) ∩ 𝑁 (1©), common in-

dices (0, 1, 3) are got using a similar way in the CSR for-

mat, and then a bitwise AND operation is applied to val-

ues attached to these groups. The final result consists of

a group with key (3), and the corresponding value “10”, rep-

resenting 𝑁 (0©) ∩ 𝑁 (1©) = { 6©}. 𝑁𝑜𝑡𝑒 : 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖𝑛𝑑𝑒𝑥 =
𝑘𝑒𝑦 × 𝑔𝑟𝑜𝑢𝑝 𝑠𝑖𝑧𝑒 + 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜 𝑓 “1” 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 = 3 × 2 + 0 = 6.

The flexibility of the BCSR format is reflected in the ad-

justable group size of the value array (i.e., bitmap width).

Assuming we use 𝑎 bits to store a key, and 𝑏 bits to store a
value, we can store a graph with maximum 2𝑎 × 𝑏 vertices.
The flexible BCSR format is a unified representation for both

bitmap and CSR by adjusting the value of 𝑎 and 𝑏. In the

bitmap format, we have 𝑎 = 0, and 𝑏 = |V| (|V| is the number

of vertices). In the CSR format, we have 𝑎 = 𝑙𝑜𝑔2 (|V|)�, and
𝑏 = 1. The flexible BCSR format inherits the advantages of

high parallelism in bitmap and high memory utilization in

CSR. In our implementation, we set 𝑎 + 𝑏 = 32 for DRAM

alignment purpose with several typical BCSR format con-

figurations of (𝑎, 𝑏) = (16, 16), (24, 8), (28, 4), and (30, 2). It
is obvious that a larger 𝑏 leads to higher parallelism of set

operations. Therefore we choose the largest 𝑏 under the

constraint of 2𝑎 × 𝑏 ≥ |V| when storing a graph using BCSR.

Table 3 shows memory space on different BCSR config-

urations and other graph data formats. In CSR, each 32-bit

column represents one neighbor. While in BCSR, each 32-bit

KVP represents 1 ∼ 𝑏 neighbors, showing better memory

efficiency. As shown in Table 3, BCSR can save 4.3% to 40.6%

memory space compared with CSR. Moreover, our format

saves 1 to 4 orders of magnitudes on the memory space

compared with the bitmap format, making it practical to

use bitwise operations in graph mining. Furthermore, BCSR

achieves 1.01× to 2.30× higher computing parallelism be-

cause BCSR exploits the parallelism of bitwise operation in

its value part.

4.2 Systolic Merge Array

The key array in the flexible BCSR format (column array in

CSR) stores neighbors with discontinuous indices, and we

design the Systolic Merge Array (SMA) to compute set

operations between two key arrays in parallel. Two KVPs

have non-empty intersections only when their keys are equal

and the bitwise AND of their values are not all zeros. Thus,
SMA needs to (1) pick out all pairs of KVPs with matched

keys from the two KVP lists; (2) compute bitwise AND of

values in parallel for each pair of KVPs with the matched

key; (3) filter out KVP in the result whose value is all zeros.

Because 𝐴 − 𝐵 = 𝐴 ∩ 𝐵 and the duality between ∩ and ∪, we

use INT as the example in this section, while DIFF can be

derived in a similar way.

Before introducing SMA, we first consider a straightfor-

ward queue-based merging scheme that finds KVPs with

matched keys in sequence. As shown in Figure 5(a), we write

multiple KVPs into two shift registers (ordered queue) in

the ascending order of the key. Then, in each merging step,

we compare the keys of the two queues’ heads. If one key

is smaller than the other, the KVP with smaller key will be

popped from its queue, and other KVPs in this queue will

move rightward.When two keys match with each other, both

two pairs will be popped, and the merging unit will calculate

the bitmap merging results. Two queues shift to the right

and receive new KVP at the same time. The ordered queue

has the advantage of lightweight hardware (i.e., one com-

parator, one merging unit, and two register-based ordered

135

DIMMining: Pruning-Efficient and Parallel Graph Mining on Near-Memory-Computing ISCA ’22, June 18–22, 2022, New York, NY, USA

Figure 5: Different hardware implementation for BCSR-based set operation: (a) ordered queue based imple-

mentation; (b) crossbar-based implementation; (c) SMA. 𝑃𝑀, 𝐹𝐴, 𝐶𝑇, and 𝐶𝐶 mean 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑚𝑎𝑡𝑟𝑖𝑥 , 𝑓 𝑖𝑙𝑡𝑒𝑟 𝑎𝑟𝑟𝑎𝑦,
𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, and 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒. 𝑌 represents the input vector size.𝐴0,1,2,3, 𝐵0,1,2,3,𝐴

′′
0,1, and 𝐵′′

0,1 are different KVPs.

queues). However, it suffers from low throughput with only

one KVP output per cycle at most.

To improve the throughput, a way is to use a crossbar ma-

trix for parallel comparison between keys, at the cost of ad-

ditional hardware resources. In the crossbar matrix, the two

lists of KVPs are split into multiple vectors (𝐴 (0) , 𝐴 (1) , . . .
and 𝐵 (0) , 𝐵 (1) , . . .) that each contains 𝑌 KVPs (e.g., 𝐴 (0) =
{𝐴 (0)

0 , 𝐴 (0)
1 , . . . , 𝐴 (0)

𝑌−1}), and we use a 𝑌 × 𝑌 crossbar to per-

form an all-to-all comparison for the keys in two vectors

in parallel. Ideally, such an implementation achieves the

throughput of 𝑌 KVP outputs per cycle. However, two new

problems will emerge after dividing KVPs into vectors:

(1) Problem 1: 𝑌 keys from one vector 𝐴 (𝑛) may be found

inmultiple vectors𝐵 (𝑚) , . . . , 𝐵 (𝑚+𝑘) . Eachmatrix comparison

only gets a partial result (e.g., 𝐴 (𝑛) ∩ 𝐵 (𝑚+𝑖)) instead of full

result (e.g.,𝐴 (𝑛) ∩ (𝐵 (𝑚) ∪ . . .∪𝐵 (𝑚+𝑘))). We need to calculate

all these partial results and combine them together to get the

full result. For example, 𝐴 (0) .𝑘𝑒𝑦 = [1, 6], 𝐵 (0) .𝑘𝑒𝑦 = [1, 4],
and 𝐵 (1) .𝑘𝑒𝑦 = [5, 6]. We need to calculate [1, 6] ∩ ([1, 4] ∪
[5, 6]).
Solution 1:Weuse a simple “compare-and-advance" scheme.

Suppose we send two vectors 𝐴 (𝑖) and 𝐵 (𝑗) to the processing

matrix in the first cycle, we compare the last keys of two

input vectors𝐴 (𝑖) and 𝐵 (𝑗) . If𝐴 (𝑖)
𝑌−1.𝑘𝑒𝑦 > 𝐵 (𝑗)

𝑌−1.𝑘𝑒𝑦, we keep

𝐴 (𝑖) unchanged and input 𝐵 (𝑗+1) in the second cycle. Oth-

erwise, 𝐴 (𝑖) is replaced by 𝐴 (𝑖+1) and 𝐵 (𝑗) keeps unchanged.

After getting all the partial results for 𝐴 (𝑛) (when the 𝐴 (𝑛) is

replaced), they are combined according to following rules:

𝐴(𝑛) ∩ (𝐵 (𝑚) ∪ . . . ∪ 𝐵 (𝑚+𝑘)) = (𝐴(𝑛) ∩ 𝐵 (𝑚)) ∪ . . . ∪ (𝐴(𝑛) ∩ 𝐵 (𝑚+𝑘))

𝐴(𝑛) − (𝐵 (𝑚) ∪ . . . ∪ 𝐵 (𝑚+𝑘)) = (𝐴(𝑛) −𝐵 (𝑚)) ∩ . . . ∩ (𝐴(𝑛) −𝐵 (𝑚+𝑘))

(4)

(2) Problem 2: The hardware matrix generates 𝑌 output

KVPs at the same time, but some pairs may be invalid (e.g.,

key unmatched or the value field of output KVP is zero),

making the result vector becomes sparse.

Solution 2: We attach a compaction module after the

crossbar matrix. The module removes the invalid KVP in the

output vector, arranging valid elements one by one.

A naïve crossbar-based implementation is shown in Fig-

ure 5 (b). Two input vectors (e.g., 𝐴 (𝑛) and 𝐵 (𝑚)) are fed

into each row and column of the crossbar, respectively. All

processing units at the crossbar intersections perform the

BCSR-based set operation in parallel and generate 𝑌 × 𝑌
output KVPs in one cycle. Only at most one out of𝑌 KVP out-

puts is valid for each row. Therefore, we send the results of

crossbar to a gather array to choose the valid output of each

row as the partial result (i.e., 𝐴 (𝑛) ∩ 𝐵 (𝑚)). After that, the

partial result is fed into a filter array (FA) to combine with

other partial results following Equation (4). Then, the full

results generated by FA are sent to the compaction array to

remove the invalid KVP, as discussed in Solution 2. The-

oretically, except for the compaction array, other modules

all take one clock cycle to process one input KVP vector.

Since the crossbar outputs 𝑌 KVPs at a time, the compaction

array needs log(𝑌) ∼ (𝑌 − 1) cycles to rearrange the valid

KVP in the output vector depending on the specific hardware

implementation. Therefore, when using the crossbar-based

implementation in a pipeline manner, each pipeline stage

takes log(𝑌) ∼ (𝑌 − 1) cycles, achieving the throughput of

𝑌/(𝑌 − 1) ∼ 𝑌/(log(𝑌) − 1) KVPs per cycle.

Because the crossbar-based implementation needs to choose

one valid output from 𝑌 outputs in each crossbar row, the

crossbar size is limited by realistic circuits constraints (e.g.,

fan-in of the gather unit). Moreover, the lower bound of

the pipeline stage is log(𝑌) due to the compaction array.

To tackle these two problems, we propose a fully-pipelined,

high throughput, and easy-to-scale crossbar-based imple-

mentation, Systolic Merge Array (SMA). SMA consists of

three main components: the processing matrix (PM), the fil-

ter array (FA), and the compaction triangle (CT), which are

depicted in Figure 5(c). As the name implies, SMA works like

136

ISCA ’22, June 18–22, 2022, New York, NY, USA Guohao Dai, Zhenhua Zhu, et al.

Table 4: Hardware complexity/throughput comparison

SMA Queue Crossbar

Storage Hardware 𝑂 (𝑌 2) 𝑂 (𝑌) 𝑂 (𝑌 2)

Compute Hardware 𝑂 (𝑌 2) 𝑂 (1) 𝑂 (𝑌 2)

Throughput (pairs/cycle) 𝑌 1/4∼1 𝑌
𝑌−1 ∼ 𝑌

𝑙𝑜𝑔𝑌−1

a traditional systolic array. The PM reads two vectors (𝐴 and

𝐵) in each cycle and transfers the results to the right. We

also need a filter array and a compaction module to generate

and compact the final full results. An example is shown in

Figure 5(a-1∼a-5). It shows the procedure of merging three

vector pairs: {𝐴 op 𝐵} (in blue), {𝐴′ op 𝐵′} (in green), and {𝐴′′

op 𝐵′′} (in orange).

Different from the crossbar structure, only the first row

and column receive the input data, and each processing ele-

ment (PE) in PM sends its upper input to the lower neighbor

PE, and left input together with output to its right neighbor

PE, which guarantees the scalability of SMA. Besides, all

the input vector elements flow into the PM in a “space-time-

offset" manner, e.g., for the 𝑛𝑡ℎ input vector, the 𝑖𝑡ℎ element
appears in row 𝑖 at cycle (𝑛 + 𝑖). In this manner, the element
of 𝐴 takes 𝑌 cycles to flow from left to right and performs

computations with all 𝑌 elements of 𝐵. We also split the

compaction phase into multiple fully pipelined stages, i.e.,

takes 𝑌 one-clock-cycle stages for compaction instead of one

log(𝑌)-clock-cycle stage. Thus, we can improve the through-
put to 𝑌 within the same area, as shown in Figure 5(c-6).

The hardware implementations of SMA will be discussed

in Sec. 5. Table 4 summarizes all three hardware implemen-

tations mentioned in this section. Considering the simple

calculations in BCSR merging operations (i.e., comparisons

and bitwise operations), a little larger hardware complexity

is still acceptable. Therefore, from the performance perspec-

tive, we choose the SMA with the highest throughput as our

hardware design.

5 DIMMINING ARCHITECTURE

To tackle huge data movements in graph mining, we propose

NMC-based DIMMining. DIMMining is built with rank-level

NMC processors in Load-Reduced DIMM (LRDIMM) without

modifying the design of DRAM devices, which fully exploits

the large internal bandwidth and ensures the rank-level com-

puting parallelism by avoiding the DIMM bus contention.

5.1 Architecture Overview

The overall architecture of DIMMining is shown in Figure

6(a). Compared with traditional storage-oriented LRDIMM,

we modify the Registering Clock Driver (RCD) for NMC in-

struction decoding and computation-oriented chip selection

(CS), and add two DIMMining NMC modules in each rank

for performing BCSR-based vertex merge operations. In or-

der to realize NMC on the premise of retaining the original

memory function, DIMMining supports two work modes,

i.e., memory mode and NMC mode. In the memory mode,

NMC modules are disabled and bypassed, and the DRAM

chips are connected with Data Buffers (DBs) directly as in the

traditional LRDIMM. In the NMCmode, one rank is split into

two sub-ranks, each of which is attached to one DIMMining

NMC module and provides 32-byte data to NMC modules

independently. The DIMMining NMCmodule receives/sends

the input/output BCSR data from/to DRAM chips within the

same rank directly or other ranks through DBs. The scala-

bility of DIMMining can be achieved by connecting the DB

buses of different ranks or realizing inter-DIMM communi-

cations through the standard DDR channel.

DRAM chips (Figure 6(b)). At the DRAM chip level, we

only restrict the usage rules of each memory bank without

modifying the internal circuit design of the DRAM device,

which ensures the applicability of DIMMining design to dif-

ferent DRAM devices. We split each DRAM chip into three

regions for storing the KVP data for each vertex in BCSR,

the starting address to read corresponding KVP data for each

vertex, and intermediate data, respectively. Since the neigh-

bor number of vertices varies greatly, the KVP number is

different for different vertices. Therefore, we store the start-

ing memory address of BCSR data for each vertex in the

address region to realize address-index-based fast access. In

each sub-rank, all KVPs in one BCSR vector are evenly stored

in multiple DRAM chips to improve the readout parallelism.

Modified RCD (Figure 6(c)). In LRDIMMs, RCD is used

for driving the command/address (C/A) signals from the

memory controller to its DRAM chips. Based on this, we add

an NMC instruction buffer & decoder and an address genera-

tor in RCD to strengthen the C/A signal driving in the NMC

mode. The buffer & decoder receives NMC instructions and

sends key instruction parameters (will be discussed in Sec.

5.2) to the address generator, which generates the address

for NMC modules within the same rank.

DIMMiningNMC (Figure 6(d)). In DIMMining, twoNMC

modules are set in each rank, which contains the data for-

warding unit, the mining processor, and an NMC controller

(NMC Ctrl). The NMC Ctrl is responsible for managing other

NMC modules, configuring mining processor functions ac-

cording to the operation queue, and accessing the next vertex

data according to the address. The data forwarding unit (Fig-

ure 6(e)) forwards the BCSR data from DRAM chips, DBs, or

cache to the input queue of the mining processor. Because of

the power-law distribution of vertex degree, a few vertices

with much more neighbors are accessed more frequently

during the mining, showing a certain degree of spatial lo-

cality. Therefore, we set an SRAM-based cache in the data

forwarding unit to store intermediate data and neighbor in-

formation of frequently used vertices. The mining processor

137

DIMMining: Pruning-Efficient and Parallel Graph Mining on Near-Memory-Computing ISCA ’22, June 18–22, 2022, New York, NY, USA

Figure 6: (a) Architecture ofDIMMining; (b) DRAMchip; (c)ModifiedRegisteringClockDriver (RCD); (d) DIMMining

NMCmodule; (e) Data forwarding unit inDIMMiningNMC; (f)Mining processor designwith (g) Processing elements

(PE), (h) Filter units (FU), and (i) Compaction units (CU). In this figure, 𝐿, 𝑅, 𝑇 , 𝐷, 𝑈𝐿, and 𝐿𝑅 mean 𝑙𝑒 𝑓 𝑡 , 𝑟𝑖𝑔ℎ𝑡 ,
𝑢𝑝𝑝𝑒𝑟 , 𝑙𝑜𝑤𝑒𝑟 , 𝑢𝑝𝑝𝑒𝑟 𝑙𝑒 𝑓 𝑡 , and 𝑙𝑜𝑤𝑒𝑟 𝑟𝑖𝑔ℎ𝑡 .

(Figure 6(f)) performs the BCSR-based vertex merging opera-

tion, which is the hardware realization of SMA. The mining

processor is composed of four parts: processing matrix (PM),

filter array (FA), compaction triangle (CT), and counting &

addition (CA) module.

Processing matrix (PM). The PM contains 𝑌 × 𝑌 con-

nected processing elements (PE, Figure 6(g)) when pro-

cessing BCSR vectors with the length of 𝑌 . The PE executes
three functions: (1) Input transfer: each PE transfers the in-

put data from the left (upper) to its right (lower) PE neighbor;

(2) Valid signal transfer: each PE transfers the output result

valid signal to its right PE neighbor. The result valid sig-

nal indicates whether the two input keys match; (3) Vertex

merging: if the input valid signal is “1", the vertex merging

operation is skipped, and PE transfers the merging results

from left to right. Otherwise, PE compares two keys and

performs bitmap-based set operations when matched.

Filter array (FA). FA filters the invalid data and combines

all partial results in the “compare-and-advance” scheme. It

contains 𝑌 filtering units (FU, Figure 6(h)), and each FU

is connected to the last PE of the same row in PM. Com-

pared with PE, FU has two additional control inputs: 𝐹𝑖𝑟𝑠𝑡
and 𝐿𝑎𝑠𝑡 . 𝐹𝑖𝑟𝑠𝑡 indicates whether the input vector appears
for the first time (e.g., 𝐴 (𝑛) appears for the first time when

calculating with 𝐵 (𝑚) in Equation (4)). If so, the result/valid

registers are initialized according to PE outputs in the same

row. Similarly, 𝐿𝑎𝑠𝑡 represents whether the input vector is
the last occurrence (e.g., 𝐴 (𝑛) appears for the last time when

calculating with 𝐵 (𝑚+𝑘) in Equation (4)). If so, the FU has

combined all partial results and will send the result to CT.

Otherwise, the result/valid registers are updated according

to the historical merging results and current PE outputs.

Compaction triangle (CT). The CT aims to skip the in-

valid merging results (e.g.,mismatched keys or result value is

all-zero) in the output vector and make the vector more com-

pact. To cooperate with PM and sustain the high throughput,

multiple compaction units (CU, Figure 6(i)) are connected

to a triangular array with the data flow from left to bottom.

For each row, if the FU in this row outputs a valid KVP, the

leftmost CU receives this valid KVP, and other CUs receive

data from its upper-left CU neighbor. Otherwise, all CUs re-

ceive data from their upper CU neighbor. Finally, the compact

output vector is obtained in the CT lower row. According

to whether the current computation is the last vertex in the

pattern to be mined, the CT results will be sent to the CA

module or written back to the cache. The CAmodule consists

of a counter register and an adder that record the inquired

pattern number.

5.2 DIMMining Instruction Design

Figure 7 illustrates the DIMMining instruction design, which

is designed to be compatible with conventional memory func-

tions and reduce the instruction transmission costs during

graph mining. The mode code manages the work mode of

DIMMining and determines the following field formats.

In the memory mode, all DRAM chips in a rank share the

same C/A address and provide 64-byte data in lockstep. The

instruction design is similar to the original storage-oriented

LRDIMM, which is decoded to standard DDR instructions by

the memory controller. The typical memory address format

is depicted in Figure 7(a).

138

ISCA ’22, June 18–22, 2022, New York, NY, USA Guohao Dai, Zhenhua Zhu, et al.

Figure 7: (a) Original LRDIMMmemory address format;

(b) DIMMining instruction format; (c) Operation code

in instruction format.

In the NMC mode, the NMC modules in each rank need

to be aware of the vertex data address and specific opera-

tions. However, because of the massive transferred data and

mining computations, transferring memory address and op-

eration code vertex-by-vertex for each rank brings a heavy

bandwidth burden to C/A bus. To handle this problem, we

propose the macro NMC instruction format for DIMMin-

ing, as shown in Figure 7(b). Instead of sending instructions

vertex-by-vertex, the proposed macro NMC instruction for-

mat splits and distributes the entire mining workload to

different ranks at one time. We split the mining workload

according to the index of the start vertex during the mining

(i.e., the vertex in the first for loop). Then these ranks decode
the instruction and generate control signals by themselves,

without the need for host-side control. The NMC instruction

format mainly contains three fields:

(1) Start vertex index indicates the index of the first

start vertex for this rank. For example, when restricting

𝑅𝑎𝑛𝑘0 to mining under the premise that the first vertex
range is { 0©, 16©, 32©}, this field for 𝑅𝑎𝑛𝑘0 is 0.

(2) Number of start vertex to be mined represents the

execution times of the first for loop in this rank. It also
reflects the workload of this rank. In the former exam-

ple, this field for 𝑅𝑎𝑛𝑘0 is 3. It should be noted that in
order to realize workload balance, the first vertices as-

signed to each rank are discontinuous. The first vertex

index is accumulated in steps of the total number of

ranks (i.e., 16 ranks in the former example).

(3) Operation code sequence represents the execution

sequence of the for loop, detailed in Figure 7. For

the example shown in Figure 3, the operation code

sequence can be expressed as follows.

000 − 000 − 001 − 000 − 110 − 111

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup

6.1.1 DIMMining setup. Table 5 shows the configurations.

We setup the simulation framework with: (1) We design a

behavior level BCSR-based graph mining simulator, which

also generates the physical memory access trace. (2) We

build a trace-based cache simulator to simulate the cache

behavior in DIMMining. We set the associativity to four and

leverage LRU cache replacement policy. The latency, area,

and power data of the cache are derived from CACTI [42]

under 32nm technology node. (3) We use Ramulator [43]

to generate the cycle-level evaluation results of each DDR4

rank. DRAM energy data are given by DRAMPower [44].

(4) For the NMC module, we estimate the latency, area, and

power using Synopsys Design Compiler with TSMC 65nm

technology library at the frequency of 500MHz. We scale

these performance results to 32nm technology node accord-

ing to [45]. We combine the above four components and one

workload distribution simulator to estimate the end-to-end

performance of DIMMining.

6.1.2 Baseline. We select following designs for comparison:

• Gramer [33] is a graph mining accelerator imple-

mented on an XCU250-2LFIGD2104E FPGA chip with

four 16GB DDR4 memories. The FPGA chip provides

1.68M LUTs, 3.37M registers, and 11.8MB BRAMs. We

use the results reported in its paper.

• GraphPi [29] is a graph mining system on CPUs. The

evaluation is carried out on a CPU machine with 2

Intel(R) Xeon(R) Silver 4210 CPUs running at 2.2GHz

with 13.75MB LLC and 64GB DDR4 memory. We run

GraphPi with the source code [46] using 24 threads.

• FlexMiner [32] is a graph mining accelerator. The

processing elements (PEs) in FlexMiner run at 1.3GHz,

with 32kB private cache and 4MB shared cache, using

15nm process. The c-map enabled FlexMiner data are
provided by its authors, and we scale the results to

32 PEs configuration (same PE number as DIMMining

while consuming more area/energy compared with

DIMMining).

6.1.3 Datasets. We carry out our evaluation on six real-

world graphs, shown in Table 1 with detailed information of

each graph (We use the same YT graph used in FlexMiner [32],

which is a superset of that used in Gramer [33] (|𝑉 |=4.6M,

|𝐸 |=44.0M)). We select these graphs for performance com-

parison because they are also used in previous graph min-

ing systems and architecture designs. The BCSR format can

compress the memory space of these graphs to less than

1GB (Table 3). So we duplicate and store the entire graph in

each sub-rank, avoiding the graph data transmissions among

139

DIMMining: Pruning-Efficient and Parallel Graph Mining on Near-Memory-Computing ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 5: DIMMining configurations
Memory configurations

Memory capacity 64GB

Channels/Rank per channel 2/8

NMC per rank 2

DDR4 DRAM parameters

DDR4 configurations 4Gb x8 2400R

Clock frequency 1200MHz

tRCD-tCAS-tRP 16-16-16

NMCmodule configurations

Technology node 32nm

Size of Systolic Merge Array 8

Cache size 128KB per NMC

different ranks. We also show the comparison of splitting

graphs into partitions in the latter experiments.

6.2 Overall Performance

We compare the performance of DIMMining with three base-

line designs under the configuration introduced in Sec. 6.1.

The comparison results are shown in Table 6. Because the

speedup is the ratio between the execution time of two

designs, we use the geometric mean metric. DIMMining

achieves an average of 222.23× and 139.51× speedup against

Gramer [33] on FPGAs and GraphPi [29] on CPUs. By uti-

lizing optimizations proposed in this paper, DIMMining can

also achieve an average of 3.62× speedup against the state-of-

the-art graphmining architecture FlexMiner with 32 PEs [32].

6.3 Ablation Study of DIMMining Designs

6.3.1 Benefit of Index Pre-comparison. By using our Pre-

comparison techniques, comparison for pruning is elimi-

nated for 3,4,5-CF and reduced for 3-MC. We add a self an-

chor and apply neighbor partition on 10% vertices for all

graphs. Figure 8 shows the speedup over naïve pruning. In-

dex pre-comparison on 5-CF achieves 1.46× speedup over

naïve pruning for CSR, and 1.65× for BCSR. Besides, we also

calculate the theoretical speedup bounds, i.e., the speedup

when all the comparisons are eliminated. Most of the CF ex-

periments show the speedup closed to the theoretical bound,

revealing that our techniques successfully eliminate com-

parison overhead for connected vertices. For 3-MC, though

only 10% of large-degree vertices store neighbor partition,

they take up 44% of neighbor set access on average. Respec-

tive percentage of comparison is completely ignored to give

the speedup bound. Actual speedups proportionally align

with the bound, showing effective comparison reduction for

disconnected vertices.

6.3.2 Benefit of Flexible BCSR Format. We compare run-

time performance of BCSR with conventional CSR on 4-CF

task. Figure 9(a) and (b) profile hardware-irrelevant algorith-

mic Performance. By offering more information within a

Table 6: Graph mining systems and architectures com-

parison (/seconds)

Pattern G Gramer GraphPi FlexMiner DIMMining

3-CF

(3-clique)

PP 0.010 0.098 - 1.594E-05

AS 0.028 0.093 0.0005 2.564E-04

MI 0.110 0.150 0.0023 1.574E-03

PA 3.090 0.640 0.0784 1.476E-02

YT 13.010 1.605 0.1862 1.159E-02

LJ 17.810 2.320 0.2096 6.899E-02

4-CF

(4-clique)

PP 0.011 0.065 - 1.708E-05

AS 0.270 0.130 0.0021 1.507E-03

MI 6.860 1.170 0.0343 2.224E-02

PA 3.740 0.660 0.0946 1.798E-02

YT 17.300 5.490 0.3213 1.541E-02

LJ 30.890 15.810 - 4.376E-01

5-CF

(5-clique)

PP 0.012 0.067 - 1.717E-05

AS 1.460 0.360 0.0139 1.011E-02

MI 274.410 44.490 - 7.764E-01

PA 4.060 0.690 0.5271 1.936E-02

YT 16.250 6.160 - 2.880E-02

LJ 29.680 535.210 - 1.347E+01

3-MC

(3-motif)

PP 0.033 0.2 - 4.744E-05

AS 0.110 0.190 0.0011 9.076E-04

MI 0.360 0.310 0.0081 6.181E-03

PA 4.170 1.280 0.2311 4.791E-02

YT 16.250 2.460 0.5473 1.162E-01

LJ 29.680 4.640 - 3.288E-01

4 Byte computation, BSCR reduces the total operations by

42.49%. Data load and store requests are reduced by 43.40%

and 28.44%, respectively. However, on current CPUs which

usually take 32-bit operand, we need to treat a BCSR’s key

and value as two operands. Despite such drawbacks, BCSR

still shows a 1.25× speedup over CSR (Figure 9(c)). Our SMA

design can further harvest BCSR’s efficiency and parallelism

by enforcing multiple operations on different bits at the

same time. Additionally, BCSR saves 16.57% memory on av-

erage (Figure 9(d)), which can be used to compensate for the

additional overhead of index pre-comparison. So BCSR can

benefit from both high parallelism and efficient pruning with

approximately the same memory overhead as CSR.

6.3.3 Benefit of Systolic Merge Array. DIMMining proposes

a novel SMA to perform set operations on two CSR format

arrays in parallel. Figure 10 shows the comparison between

SMA and conventional ordered queue and crossbar. Our SMA

Figure 8: Index Pre-comparison Speedup over Naive

Pruning on CSR, measured on CPUs

140

ISCA ’22, June 18–22, 2022, New York, NY, USA Guohao Dai, Zhenhua Zhu, et al.

Figure 9: (a) Operation counts and (b) Data request

volume of BCSR (normalized to CSR). (c) CPU runtime

of BCSR normalized to CSR with naïve pruning. (d)

Memory overhead normalized to CSR on 4-CF.

achieves an average of 7.37× and 7.00× speedup against or-

dered queue and crossbar, while the end-to-end DIMMining

mining speedup is 3.91× and 3.75× on average.

6.3.4 Benefit of Near Memory Computing. We also analyze

the performance gain brought by the thought of near mem-

ory computing. For a fair comparison, we propose a baseline

design w/o using NMC which has the same PE number and

memory configuration as DIMMining. The only difference

is that the baseline w/o NMC needs data communications

between PEs and off-chip DRAM, and the off-chip memory

bandwidth is assumed to be 38.4GB/s (19.2GB/s per chan-

nel). The results are shown in Figure 11. Compared with the

baseline design w/o NMC, DIMMining can achieve 1.21× to

5.39× and 3.98× to 5.35× speedup on different mining pat-

terns for LJ and PP, respectively. The speedup comes from

two aspects: (1) in NMC design, all computations happen

in each rank, eliminating the data movements between PEs

and off-chip memory. And memory ranks do not need to

compete with others for DDR bandwidth. (2) DIMMining

splits the rank into two independent sub-ranks, improving

the DRAM access parallelism of graph mining.

6.4 Area and Power Analysis

We show the area cost of DIMMining in Table 7. As we can

see, one NMC module is less than 0.38𝑚𝑚2 under the 32 nm

process (2 modules/rank). As a contrast, the typical area of a

DRAM chip is ∼ 100𝑚𝑚2. The power of each module takes

105mW, which is much smaller than the power of entire

LRDIMM (e.g., ∼10W) . For reference, each PE of FlexMiner

takes 0.18𝑚𝑚2 at 15nm technology node (FlexMiner does not

Table 7: DIMMining Design Overhead of One NMC

Module (PM: processing matrix, FA: filter array, CT:

compaction triangle, CA: counting & additionmodule.)

Computing Units
Cache Total

PM FA CT CA

Area (𝜇𝑚2) 33194 3247 10162 679 334815 382097

Power (mW) 10.20 1.27 2.49 0.10 91.76 105.82

provide power data). The effective area of DIMMining NMC

module is 0.14𝑚𝑚2 when scaling to 15nm, which is similar

to FlexMiner. We also simulate the end-to-end energy con-

sumption, and here we take 4-CF pattern mining on LJ as an

example. The end-to-end graph mining procedure consumes

1.002J in total, DRAM access, cache read/write, and compu-

tation, occupy 349𝑚𝐽 , 366𝑚𝐽 , and 287𝑚𝐽 , respectively.

6.5 Complex Patterns

In Table 8, we show the comparison results on more complex

patterns: “Diamond" is the pattern in Figure 2(a), and we

take the mining order provided by FlexMiner [32]; “House"

is the pattern P1 in GraphPi [29]’s paper and FlexMiner does

not provide the House mining results. The results show that

DIMMining achieves 23.91× and 1.51× speedup compared

with GraphPi and FlexMiner on complex patterns.

6.6 Discussions

6.6.1 Cache Size. The cache in DIMMining provides an effi-

cient way to access frequently-used intermediate data, im-

proving the mining performance. Figure 12 shows the trend

of latency and cache hit rate when cache size changes in two

representative graphs. As the cache hit rate increases, the

DRAM access volume drops improving the mining perfor-

mance. However, a larger cache will introduce longer access

latency and higher hardware costs, degrading DIMMining

performance. Since both the graph scale and the inquired

pattern determine the intermediate data volume and mem-

ory access characteristics, we choose the 128KB cache as an

optimal design in this paper.

6.6.2 Workload Balance. In DIMMining, we distribute the

mining workloads to different ranks evenly due to the index

of the start vertex of mining. Figure 13 shows the workloads

of different ranks. Here the workload is defined by operation

Table 8: Complex Patterns Comparison (/Seconds)

Diamond House

G GraphPi FlexMiner DIMMining GraphPi DIMMining

PP 0.072 - 3.98E-05 0.062 4.96E-03

AS 0.077 0.0009 6.19E-04 0.726 3.89E-02

MI 0.124 0.0071 4.92E-03 9.686 6.21E-01

PA 0.674 0.0810 3.69E-02 7.144 5.30E-01

YT 1.188 0.2183 1.28E-01 51.94 6.02E+00

LJ 2.679 0.3182 3.21E-01 299.4 2.90E+00

141

DIMMining: Pruning-Efficient and Parallel Graph Mining on Near-Memory-Computing ISCA ’22, June 18–22, 2022, New York, NY, USA

Figure 10: (a) Computing part and (b) End-to-end mining speedup of SMA and crossbar (over ordered queue).

Figure 11: Latency comparison of DIMMining and base-

line design w/o using NMC on LJ (left) and PP (right).

counts and data access volume, and the results are normal-

ized to the average workload of these 16 ranks. Experimental

results show that for most cases, the fluctuation of work-

load is less than 10%, revealing a good workload balance of

different ranks. For the same mining pattern, the workload

imbalance of small graphs is worse than that of large graphs.

While for the same graph, a more complex pattern usually

brings a worse workload imbalance.

6.6.3 Scalability. Figure 14(a) displays how the DIMMining

performance scales with the number of ranks (on the premise

that the memory space of graphs is less than 1GB which

makes it possible to duplicate them in each rank). For small

graphs (e.g., PP), the processing time is quite short. When

deploying such graph mining tasks on multiple ranks, the

communication overhead (e.g., C/A transfer) becomes non-

negligible and causes sub-linear scaling with multiple ranks.

On the other hand, for other graphs whose mining time is

much longer, the performance increases linearly with the

number of ranks, showing good scalability.

We also conduct an experiment that splits LJ onto 16 ranks

for the mining on large-scale graphs, where the computation

requires inter-rank graph data transmissions. We assume

the inter-rank data transfer rate is 2400𝑀𝑇 /𝑠 . Results in Fig-
ure 14(b) show that the inter-rank communications only take

19.50% runtime overhead compared with the graph-copy-

based mining (best case without inter-rank communications),

guaranteeing good scalability for large-scale graphs.

6.6.4 Comparison with SISA. SISA is an instruction set ar-

chitecture for graph mining [47] based on Processing-In-

Memory. The major differences between DIMMining and

SISA contain two aspects. (1) SISA pays more attention to

the set-centric programming paradigm and formulations of

graph algorithms, while DIMMining focuses on optimizing

graph mining performance from both algorithm and hard-

ware perspectives. We run the 3-CF mining on the graphs

mentioned in SISA [17]. We assume SISA runs at 5GHz and

use the clock cycle number given by SISA paper to estimate

the mining time of SISA. Figure 15 shows that DIMMining

achieves 5.78× to 12.32× speedup compared with SISA. (2)

SISA is designed based on Hybrid Memory Cube (HMC) and

modifications of DRAM peripheral circuits, while DIMMin-

ing does not change the DRAM internal circuit and can be

applied to arbitrary DDR technology.

7 RELATEDWORKS

7.1 Graph Mining

Previous designs [28–33, 39–41, 48–57] have proposed sev-

eral techniques to improve the performance of graph min-

ing problems. RStream [40] uses tuple streaming and par-

titioning to reduce I/O overhead and preserve the locality.

GraphZero [30] and GraphPi [29] automatically generate and

enforce a set of restrictions to break symmetry, and thus elim-

inate computation redundancy. GraphZero and GraphPi also

address the significance of scheduling. Different schedules

vary a lot in search space and data reusability. Gramer [33]

introduces the idea of memory priority to optimize data ac-

cess. The high-priority memory is used to permanently store

the frequently accessed data to improve the locality. Inter-

secX [31] treats neighbors of vertex as a string and designs

specialized S-cache to minimize data transfer. FlexMiner [32]

generates pattern-specific execution plans and utilizes on-

chip storage for data reuse, leading to 10× speedup compared

with GraphZero. FINGERS [48] explores parallelism of dif-

ferent levels in the graph mining problem. In conclusion,

optimizations like ensuring locality and improving paral-

lelism are proved to be effective in mining problems, which

are studied with novel designs in DIMMining.

7.2 Near-Memory-Computing

With the data volume sharply growing in recent years, the

memory wall problem has become the main performance

bottleneck in various memory-centric application scenarios.

142

ISCA ’22, June 18–22, 2022, New York, NY, USA Guohao Dai, Zhenhua Zhu, et al.

Figure 12: Latency breakdown and cache size design space exploration.

Figure 13: Normalized workloads of different ranks. (a) 3-CF (b) 5-CF.

Figure 14: (a) Speedup to single rank under different

ranknumber configurations. (b) Runtime@LJ of dupli-

cating the graph on 16 ranks (graph copy) and equally

splitting the graph to 16 ranks (graph split).

Near-Memory-Computing (NMC) which puts computation

units closer to the memory shows great potential to acceler-

ate data-intensive applications because of low latency and

less distance for data movement [58–66]. RecNMP [58] im-

plements a sparse operation engine near the memory to

aggregate feature vectors in recommendation systems, lead-

ing to over 4× throughput with conventional designs. Ten-

sorDIMM [59] introduces the NMC architecture to GPUs

for deep learning-based recommendation systems, leading

to the speedup of one order of magnitude. NEST [62] and

Medal [63] introduce NMC for sequence processing in the

domain of bio-informatics. All these studies show the poten-

tial of NMC for memory-centric applications, and motivate

us to design DIMMining for the graph mining problems.

8 CONCLUSION

In this paper, we propose DIMMining, a DIMM-based graph

mining architecture. DIMMining targets three challenges

Figure 15: 3-CFmining latency of SISA andDIMMining.

in the mining problem: heavy comparison overheads, low

set operation parallelism, heavy data transfer, and proposes

four novel techniques to solve these challenges. We propose

index pre-comparison scheme with self anchor and neighbor

partition to reduce comparison overheads during runtime.

The set operation is accelerated by our BCSR (bitmap+CSR)

format and a novel systolic merge array architecture. We

implement DIMMining with the near-memory-computing

architecture to alleviate heavy data movements. All these ex-

tensive experimental results show that DIMMining achieves

222.23× and 139.51× speedup compared with FPGAs and

CPUs, and 3.62× speedup against the state-of-the-art graph

mining architecture.

ACKNOWLEDGEMENT

This work was supported by National Natural Science Foun-

dation of China (No. U19B2019, 62104128, 61832007); China

Postdoctoral Science Foundation (No. 2019M660641); Na-

tional Key R&D Program of China (No. 2017YFA02077600);

Tsinghua EE Xilinx AI Research Fund; Beijing National Re-

search Center for Information Science and Technology (BN-

Rist); Beijing Innovation Center for Future Chips. This work

will be included in dgSPARSE project1.

1The open source dgSPARSE project: https://dgsparse.github.io/

143

DIMMining: Pruning-Efficient and Parallel Graph Mining on Near-Memory-Computing ISCA ’22, June 18–22, 2022, New York, NY, USA

REFERENCES
[1] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The pagerank citation ranking: Bringing order to the web. Technical

report, Stanford InfoLab, 1999.

[2] Seth A Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. Infor-

mation network or social network? the structure of the twitter follow

graph. In International Conference on World Wide Web (WWW), pages

493–498, 2014.

[3] Alexandra Duma and Alexandru Topirceanu. A network motif based

approach for classifying online social networks. In IEEE Interna-

tional Symposium onApplied Computational Intelligence and Informatics

(SACI), pages 311–315. IEEE, 2014.

[4] Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen, Ming

Wu, Wei Li, and Lidong Zhou. Tux2: Distributed graph computation

for machine learning. In USENIX Symposium on Networked Systems

Design and Implementation (NSDI), pages 669–682, 2017.

[5] Thomas N Kipf and Max Welling. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[6] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive represen-

tation learning on large graphs. In International Conference on Neural

Information Processing Systems (NeurIPS), pages 1025–1035, 2017.

[7] Peng-Cheng Lin and Wan-Lei Zhao. A comparative study on hierar-

chical navigable small world graphs. Computing Research Repository

(CoRR) abs/1904.02077, 2019.

[8] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approxi-

mate nearest neighbor search using hierarchical navigable small world

graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 42(4):824–836, 2018.

[9] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L

Hamilton, and Jure Leskovec. Graph convolutional neural networks

for web-scale recommender systems. In ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining (SIGKDD), pages

974–983, 2018.

[10] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdi-

ari, and S Cenk Sahinalp. Biomolecular network motif counting and

discovery by color coding. Bioinformatics, 24(13):i241–i249, 2008.

[11] Sutanay Choudhury, Lawrence Holder, George Chin, Khushbu Agar-

wal, and John Feo. A selectivity based approach to continuous pattern

detection in streaming graphs. arXiv preprint arXiv:1503.00849, 2015.

[12] Mohammed AlQuraishi. Alphafold at casp13. Bioinformatics,

35(22):4862–4865, 2019.

[13] Ichigaku Takigawa and Hiroshi Mamitsuka. Graph mining: procedure,

application to drug discovery and recent advances. Drug discovery

today, 18(1-2):50–57, 2013.

[14] Bernardete Ribeiro, Ning Chen, and Alexander Kovacec. Shaping

graph pattern mining for financial risk. Neurocomputing, 2017.

[15] Leman Akoglu and Christos Faloutsos. Anomaly, event, and fraud

detection in large network datasets. In Proceedings of the sixth ACM

international conference on Web search and data mining, pages 773–774.

ACM, 2013.

[16] Balázs Adamcsek, Gergely Palla, Illés J. Farkas, Imre Derényi, and

Tamás Vicsek. Cfinder: locating cliques and overlapping modules in

biological networks. Bioinformatics, 22(8):1021–1023, 2006.

[17] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository

with interactive graph analytics and visualization. In AAAI Conference

on Artificial Intelligence (AAAI), 2015.

[18] Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang Li, and

Huazhong Yang. Nxgraph: An efficient graph processing system on

a single machine. In International Conference on Data Engineering

(ICDE), pages 409–420, 2016.

[19] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and

Carlos Guestrin. Powergraph: Distributed graph-parallel computation

on natural graphs. In USENIX Symposium on Operating Systems Design

and Implementation (OSDI), pages 17–30, 2012.

[20] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-

scale graph processing on a single machine using 2-level hierarchical

partitioning. In USENIX Annual Technical Conference (ATC), pages

375–386, 2015.

[21] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,

Michael J Franklin, and Ion Stoica. Graphx: Graph processing in a

distributed dataflow framework. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI), pages 599–613, 2014.

[22] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-

oung Choi. A scalable processing-in-memory accelerator for parallel

graph processing. In Annual International Symposium on Computer

Architecture (ISCA), pages 105–117, 2015.

[23] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu, Yu Wang, and

Huazhong Yang. Foregraph: Exploring large-scale graph processing

on multi-fpga architecture. In ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (FPGA), pages 217–226, 2017.

[24] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-

scale graph computation on just a {PC}. In {USENIX} Symposium

on Operating Systems Design and Implementation (OSDI), pages 31–46,

2012.

[25] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos

Guestrin, and Joseph M Hellerstein. Graphlab: A new parallel frame-

work for machine learning. In Conference on Uncertainty in Artificial

Intelligence (UAI), volume 20, 2010.

[26] Guohao Dai, Tianhao Huang, Yu Wang, Huazhong Yang, and John

Wawrzynek. Graphsar: A sparsity-aware processing-in-memory archi-

tecture for large-scale graph processing on rerams. In Asia and South

Pacific Design Automation Conference (ASP-DAC), pages 120–126, 2019.

[27] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun,

Yongpan Liu, Yu Wang, Yuan Xie, and Huazhong Yang. Graphh: A

processing-in-memory architecture for large-scale graph processing.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (IEEE TCAD), 38(4):640–653, 2019.

[28] Daniel Mawhirter and Bo Wu. Automine: harmonizing high-level ab-

straction and high performance for graph mining. In ACM Symposium

on Operating Systems Principles (SOSP), pages 509–523, 2019.

[29] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai. Graphpi: High

performance graph pattern matching through effective redundancy

elimination. In International Conference for High Performance Com-

puting, Networking, Storage and Analysis (SC), pages 1418–1431. IEEE

Computer Society, 2020.

[30] Daniel Mawhirter, Sam Reinehr, Connor Holmes, Tongping Liu, and

Bo Wu. Graphzero: Breaking symmetry for efficient graph mining.

arXiv preprint arXiv:1911.12877, 2019.

[31] Gengyu Rao, Jingji Chen, Jason Yik, and Xuehai Qian. Intersectx: An

efficient accelerator for graph mining. arXiv preprint arXiv:2012.10848,

2020.

[32] Xuhao Chen, Tianhao Huang, Shuotao Xu, Thomas Bourgeat, and

Chanwoo Chung Arvind. Flexminer: A pattern-aware accelerator for

graph pattern mining. InAnnual International Symposium on Computer

Architecture (ISCA), pages 105–117, 2021.

[33] Pengcheng Yao, Long Zheng, Zhen Zeng, Yu Huang, Chuangyi Gui, Xi-

aofei Liao, Hai Jin, and Jingling Xue. A locality-aware energy-efficient

accelerator for graph mining applications. In Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO), pages 895–907.

IEEE, 2020.

[34] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large net-

work dataset collection. http://snap.stanford.edu/data, June 2014.

144

ISCA ’22, June 18–22, 2022, New York, NY, USA Guohao Dai, Zhenhua Zhu, et al.

[35] Mohammed Elseidy, EhabAbdelhamid, Spiros Skiadopoulos, and Panos

Kalnis. Grami: Frequent subgraph and pattern mining in a single large

graph. Proceedings of the VLDB Endowment, 7(7):517–528, 2014.

[36] Bronwyn H Hall, Adam B Jaffe, and Manuel Trajtenberg. The nber

patent citation data file: Lessons, insights and methodological tools,

2001.

[37] Xu Cheng, Cameron Dale, and Jiangchuan Liu. Statistics and social

network of youtube videos. In Interntional Workshop on Quality of

Service, pages 229–238. IEEE, 2008.

[38] likwid-perfctr: Measuring applications’ interaction with the hardware

using the hardware performance counter. [Online]. https://github.

com/RRZE-HPC/likwid/wiki/likwid-perfctr.

[39] Carlos HC Teixeira, Alexandre J Fonseca, Marco Serafini, Georgos

Siganos, Mohammed J Zaki, and Ashraf Aboulnaga. Arabesque: a

system for distributed graph mining. In ACM Symposium on Operating

Systems Principles (SOSP), pages 425–440, 2015.

[40] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guo-

qing Harry Xu. Rstream: marrying relational algebra with streaming

for efficient graph mining on a single machine. In USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI), pages

763–782, 2018.

[41] Shuo Han, Lei Zou, and Jeffrey Xu Yu. Speeding up set intersections

in graph algorithms using simd instructions. In ACM SIGMOD Interna-

tional Conference on Management of Data (SIGMOD), pages 1587–1602,

2018.

[42] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P

Jouppi. Cacti 6.0: A tool to model large caches. HP laboratories, 27:28,

2009.

[43] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast and

extensible dram simulator. IEEE Computer architecture letters, 15(1):45–

49, 2015.

[44] Karthik Chandrasekar, Christian Weis, Yonghui Li, Benny Akesson,

Norbert Wehn, and Kees Goossens. Drampower: Open-source dram

power & energy estimation tool. URL: http://www.drampower.info, 22,

2012.

[45] Aaron Stillmaker and Bevan Baas. Scaling equations for the accu-

rate prediction of cmos device performance from 180 nm to 7 nm.

Integration, 58:74–81, 2017.

[46] Graphpi. [Online]. https://github.com/thu-pacman/GraphPi.

[47] Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski,

Rachata Ausavarungnirun, Jakub Beránek, Konstantinos Kanellopou-

los, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana

Stefan, et al. Sisa: Set-centric instruction set architecture for graph

mining on processing-in-memory systems. In Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO), pages 282–297,

2021.

[48] Qihang Chen, Boyu Tian, and Mingyu Gao. Fingers: Exploiting fine-

grained parallelism in graph mining accelerators. In International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), page 43–55, 2022.

[49] Kasra Jamshidi, RakeshMahadasa, and Keval Vora. Peregrine: a pattern-

aware graph mining system. In European Conference on Computer

Systems (EuroSys), pages 1–16, 2020.

[50] Vinicius Dias, Carlos HC Teixeira, Dorgival Guedes, Wagner Meira,

and Srinivasan Parthasarathy. Fractal: A general-purpose graph pat-

tern mining system. In ACM SIGMOD International Conference on

Management of Data (SIGMOD), pages 1357–1374, 2019.

[51] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James

Cheng. G-miner: an efficient task-oriented graph mining system. In

European Conference on Computer Systems (EuroSys), pages 1–12, 2018.

[52] Cheng Zhao, Zhibin Zhang, Peng Xu, Tianqi Zheng, and Jiafeng Guo.

Kaleido: An efficient out-of-core graph mining system on a single

machine. In International Conference on Data Engineering (ICDE),

pages 673–684. IEEE, 2020.

[53] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali.

Pangolin: An efficient and flexible graph mining system on cpu and

gpu. Proceedings of the VLDB Endowment, 13(8):1190–1205, 2020.

[54] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Ke-

shav Pingali. Sandslash: a two-level framework for efficient graph

pattern mining. In ACM International Conference on Supercomputing

(ICS), pages 378–391, 2021.

[55] Xuhao Chen et al. Efficient and scalable graph pattern mining on gpus.

arXiv preprint arXiv:2112.09761, 2021.

[56] Daniel Mawhirter, Samuel Reinehr, Wei Han, Noah Fields, Miles Claver,

Connor Holmes, Jedidiah McClurg, Tongping Liu, and BoWu. Dryadic:

Flexible and fast graph pattern matching at scale. In International

Conference on Parallel Architectures and Compilation Techniques (PACT),

pages 289–303. IEEE, 2021.

[57] Chuangyi Gui, Xiaofei Liao, Long Zheng, Pengcheng Yao, Qinggang

Wang, and Hai Jin. Sumpa: Efficient pattern-centric graph mining with

pattern abstraction. In International Conference on Parallel Architectures

and Compilation Techniques (PACT), pages 318–330. IEEE, 2021.

[58] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas

Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia,

Hsien-Hsin S Lee, et al. Recnmp: Accelerating personalized recom-

mendation with near-memory processing. In Annual International

Symposium on Computer Architecture (ISCA), pages 790–803, 2020.

[59] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensordimm: A practi-

cal near-memory processing architecture for embeddings and tensor

operations in deep learning. In Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO), pages 740–753, 2019.

[60] Vivek Seshadri, Thomas Mullins, Amirali Boroumand, Onur Mutlu,

Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry. Gather-

scatter dram: In-dram address translation to improve the spatial lo-

cality of non-unit strided accesses. In Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 267–280, 2015.

[61] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and

Nam Sung Kim. Chameleon: Versatile and practical near-dram accel-

eration architecture for large memory systems. In Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 1–13.

IEEE, 2016.

[62] Wenqin Huangfu, Krishna T Malladi, Shuangchen Li, Peng Gu, and

Yuan Xie. Nest: Dimm based near-data-processing accelerator for

k-mer counting. In IEEE/ACM International Conference On Computer

Aided Design (ICCAD), pages 1–9. IEEE, 2020.

[63] Wenqin Huangfu, Xueqi Li, Shuangchen Li, Xing Hu, Peng Gu, and

Yuan Xie. Medal: Scalable dimm based near data processing acceler-

ator for dna seeding algorithm. In Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 587–599, 2019.

[64] Weiyi Sun, Zhaoshi Li, Shouyi Yin, Shaojun Wei, and Leibo Liu. Abc-

dimm: Alleviating the bottleneck of communication in dimm-based

near-memory processing with inter-dimm broadcast. In Annual Inter-

national Symposium on Computer Architecture (ISCA), 2021.

[65] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho

Kim, Il Park, Mithuna Thottethodi, and TN Vijaykumar. Newton: A

dram-maker’s accelerator-in-memory (aim) architecture for machine

learning. In Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), pages 372–385. IEEE, 2020.

[66] Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou,

Vasileios Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa,

Nectarios Koziris, Georgios Goumas, and Onur Mutlu. Syncron: Effi-

cient synchronization support for near-data-processing architectures.

In International Symposium on High-Performance Computer Architec-

ture (HPCA), pages 263–276. IEEE, 2021.

145

