
DeSCo: Towards Generalizable and Scalable Deep Subgraph
Counting

Tianyu Fu

Tsinghua University

Beijing, China

fty22@mails.tsinghua.edu.cn

Chiyue Wei

Tsinghua University

Beijing, China

chiyue.wei@duke.edu

Yu Wang
∗

Tsinghua University

Beijing, China

yu-wang@tsinghua.edu.cn

Rex Ying

Yale University

New Haven, Connecticut, USA

rex.ying@yale.edu

ABSTRACT
Subgraph counting is the problem of counting the occurrences of

a given query graph in a large target graph. Large-scale subgraph

counting is useful in various domains, such as motif analysis for

social network and loop counting for money laundering detection.

Recently, to address the exponential runtime complexity of scalable

subgraph counting, neural methods are proposed. However, existing

approaches fall short in three aspects. Firstly, the subgraph counts

vary from zero to millions for different graphs, posing a much larger

challenge than regular graph regression tasks. Secondly, current

scalable graph neural networks have limited expressive power and

fail to efficiently distinguish graphs for count prediction. Further-

more, existing neural approaches cannot predict query occurrence

positions.

We introduce DeSCo, a scalable neural deep subgraph count-

ing pipeline, designed to accurately predict both the count and

occurrence position of queries on target graphs post single training.

Firstly, DeSCo uses a novel canonical partition and divides the large

target graph into small neighborhood graphs, greatly reducing the

count variation while guaranteeing no missing or double-counting.

Secondly, neighborhood counting uses an expressive subgraph-based

heterogeneous graph neural network to accurately count in each

neighborhood. Finally, gossip propagation propagates neighborhood

counts with learnable gates to harness the inductive biases of mo-

tif counts. DeSCo is evaluated on eight real-world datasets from

various domains. It outperforms state-of-the-art neural methods

with 137× improvement in the mean squared error of count predic-

tion, while maintaining the polynomial runtime complexity. Our

open-source project is at https://github.com/fuvty/DeSCo.

CCS CONCEPTS
• Information systems→ Graph-based database models.

∗
Corresponding Author

This work is licensed under a Creative Commons Attribution

International 4.0 License.

WSDM ’24, March 4–8, 2024, Merida, Mexico

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0371-3/24/03

https://doi.org/10.1145/3616855.3635788

KEYWORDS
subgraph counting, graph mining, graph neural network

ACM Reference Format:
Tianyu Fu, Chiyue Wei, Yu Wang, and Rex Ying. 2024. DeSCo: Towards

Generalizable and Scalable Deep Subgraph Counting. In Proceedings of the

17th ACM International Conference on Web Search and Data Mining (WSDM

’24), March 4–8, 2024, Merida, Mexico. ACM, New York, NY, USA, 22 pages.

https://doi.org/10.1145/3616855.3635788

1 INTRODUCTION
Given a query graph and a target graph, the problem of subgraph

counting is to count the number of patterns, defined as subgraphs of

the target graph, that are graph-isomorphic to the query graph [63].

Subgraph counting is crucial for domains including biology [1,

6, 8, 69, 73], social science [40, 60, 75, 80], risk management [3, 62],

and software analysis [77, 85]. For example, in brain networks, it is

used to identify important functional motifs and understand how

the brain evolves [71]. In social networks, counts of stars, holes, or

paths are used to characterize circles of friends [18].

While being essential in graph and network analysis, subgraph

counting is a #P-complete problem [76]. Due to the computational

complexity, existing exact counting algorithms are restricted to

small query graphs with no more than 5 vertices [2, 56, 59]. The

commonly used VF2 [21] algorithm fails to even count a single

query of a 5-node chain within a week’s time budget on a large

target graph Astro [43] with nineteen thousand nodes.

Luckily, approximate counting of query graphs is sufficient in

most real-world use cases [38, 41, 64]. Heuristic methods can scale

to large targets by substructure sampling, random walk, and color-

based sampling, allowing estimation of the frequency of query

graph occurrences. However, they still cannot scale to large queries.

Very recently, Graph Neural Networks (GNNs) are employed as a

deep learning-based approach to scale the query graphs in subgraph

counting [20, 45, 93]. The target graph and the query graph are

embedded via a GNN, which predicts the motif count through a

regression task.

However, there exist several major challenges with existing

heuristic and GNN approaches: 1) The number of graph structures

and count variation both grow super-exponentially with respect to

the graph size [61, 68], resulting in large approximation error [63].

For different large target graphs, the counts of the same query can

vary from zero to millions, making the task much harder than most

218

https://github.com/fuvty/DeSCo
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3616855.3635788
https://doi.org/10.1145/3616855.3635788
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3616855.3635788&domain=pdf&date_stamp=2024-03-04

WSDM ’24, March 4–8, 2024, Merida, Mexico Tianyu Fu, Chiyue Wei, Yu Wang, & Rex Ying

1 10 100

best neural method

 canonical

partition

+ SHMP

+ gossip 
propagation

1.8

1

heuristic method
with exponential runtime

Sec 4.1,4.2

Sec 4.3

Sec 4.4

137

49 2.8x

75x

137x

MSE of subgraph count prediction

DeSCo

1

Figure 1: DeSCoPipeline reduces themean square error (MSE)
of subgraph count prediction with three components: canoni-
cal partition, subgraph-based heterogeneousmessage passing
(SHMP) and gossip propagation. The MSE is evaluated and
averaged on eight real-world datasets.

graph regression tasks [70], which only predict a single-digit num-

ber with a small upper bound. 2) The expressive power of commonly

used message passing GNNs is limited by the Weisfeiler-Lehman

(WL) test [20, 42, 86]. Certain structures are not distinguishable

with these GNNs, let alone counting them, resulting in the same

count prediction for different queries. 3) Furthermore, most existing

approximate heuristic and GNN methods only focus on estimating

the total count of a query in the target graph [15, 16, 20, 45], but

not the occurrence positions of the patterns, as shown in Figure 2.

Yet such position distribution information is crucial in various ap-

plications [10, 26, 35, 74, 90].

Proposed work. To resolve the above challenges, we propose

DeSCo, a GNN-based model that learns to predict both pattern

counts and occurrence positions on any target graph. The main

idea of DeSCo is to leverage the local information of neighborhood

patterns to predict query counts and occurrences in the entire target

graph. DeSCo first uses canonical partition to decompose the target

graph into small neighborhoods. The local information is then

encoded using a GNN with subgraph-based heterogeneous message

passing. Finally, we perform gossip propagation to use inductive

biases to improve counting accuracy over the entire graph. Our

contributions are four-fold.

Canonical partition. Firstly, we propose canonical partition that

divides the problem into subgraph counting for individual neigh-

borhoods. We theoretically prove that no pattern will be double

counted or missed for all neighborhoods. The algorithm allows the

model to make accurate predictions on large target graphs with

high count variation. Furthermore, we can predict the pattern po-

sition distribution for the first time, as shown in Figure 2. In this

citation network, the hotspots represent overlapped linear citation

chains, indicating original publications that motivate multiple fu-

ture directions of incremental contributions [30, 89], which shed

light on the research impact of works in this network.

Subgraph-based heterogeneous message passing. Secondly, we
propose a general approach to enhance the expressive power of

any MPGNNs by encoding the subgraph structure through het-

erogeneous message passing. The message type is determined by

whether the edge presents in a certain subgraph, e.g., a triangle. We

Figure 2: The total count and the position distribution of the
query graph over the CiteSeer Citation Network. The figure
compares between ground truth and DeSCo predictions. The
hotspots are where the 4-chain patterns appear most often
in CiteSeer.

show that this architecture outperforms expressive GNNs, includ-

ing GIN [86] and ID-GNN [92], while maintaining the polynomial

runtime complexity for scalable subgraph counting.

Gossip propagation. We further improve the count prediction

accuracy by utilizing two inductive biases of the counting problem:

homophily and antisymmetry. Real-world graphs share similar pat-

terns among adjacent nodes, as shown in Figure 2. Furthermore,

since canonical count depends on node indices, there exists an-

tisymmetry due to canonical partition. Therefore, we propose a

gossip propagation phase featuring a learnable gate for propagation

to leverage the inductive biases.

Generalization Framework. We propose a generalization frame-

work that uses the carefully designed synthetic dataset to enable

model generalization to different real-world datasets. After training

on the synthetic dataset, the model can directly perform subgraph

counting inference with high accuracy on real-world datasets.

To demonstrate the effectiveness of DeSCo, we compare it against

state-of-the-art GNN-based subgraph counting methods [20, 45, 46],

as well as approximate heuristic method [15, 16] on eight real-

world datasets from various domains. DeSCo achieves 137× mean

square error reduction of count predictions for both small and large

targets, as shown in Figure 1. To the best of our knowledge, it

is also the first approximate method to accurately predict pattern

position distribution as illustrated in Figure 2. DeSCo also maintains

polynomial runtime efficiency, demonstrating orders of magnitude

speedup over the heuristic [15, 16] and exact methods [21, 72].

2 RELATEDWORKS
There has been extensive lines of work for subgraph counting.

Exact counting algorithms. Exact methods generally count sub-

graphs by searching through all possible node combinations and

finding the matching pattern. Early methods usually focus on im-

proving the matching phase [21, 51, 83] Recent approaches empha-

size the importance of pruning the search space and avoiding double

counting [23, 48, 49, 67], which inspires the design our canonical

count objective (Section 4.1). However, exact methods still scale

poorly in terms of query size (often nomore than five nodes) despite

much effort [19, 59].

Approximate heuristic methods. To further scale up the count-

ing problem, approximate counting algorithms sample from the

target graph to estimate pattern counts. Strategies like path sam-

pling [39, 79], random walk [66, 88], substructure sampling [29, 38],

219

DeSCo: Towards Generalizable and Scalable Deep Subgraph Counting WSDM ’24, March 4–8, 2024, Merida, Mexico

given
and predicted

canonical neighborhoods

correct error
and aggregate

decompose to

(b) Neighborhood
 Counting

(a) Canonical
 Partition

iterate over

predict
canonical count
on each

(c) Gossip
 Propagation

query

target

0

5

1

3

2

6

4

count query graph
in target graph

3

...

5

?

?

given
?

6

target graph
with neighborhood counts

0

5

1

3

2

6

4

2 2

2

00

0

1

∑
=7

subgraph
count

Figure 3: DeSCo Pipeline in 3 steps. (a) Step 1. Canonical Partition: Given query and target, decompose target into multiple node-
induced subgraphs, i.e., canonical neighborhoods, based on node indices. Each neighborhood contains a canonical node that has
the greatest index in the neighborhood. (b) Step 2. Neighborhood Counting: Predict the canonical counts of each neighborhood
via an expressive GNN, and assign the count of the neighborhood to the corresponding canonical node. Neighborhood counting
is the local count of queries. (c) Step 3. Gossip Propagation: Use GNN prediction results to estimate canonical counts on the
target graph through learnable gates.

and color coding [14–16] are used to narrow the sample space and

provides better error bound. However, large and rare queries are

still hard to find in the vast sample space, leading to large approxi-

mation error [15, 16].

GNN-based approaches. Recently, GNNs have been used to at-

tempt counting large queries. [45, 91] use GNNs to embed the query

and target graph, and predict subgraph counts via embeddings. [20]

theoretically analyzes the expressive power of GNNs for counting

and proposes an expressive GNN architecture. [93] proposes an

active learning scheme for the problem. [46] proposes expensive

edge-to-vertex dual graph transformation to enhance the model ex-

pressive power for subgraph counting. Unfortunately, large target

graphs have extremely complex structures and a high variation of

pattern count, so accurate prediction remains challenging.

3 PRELIMINARY
Let 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡) be a large target graph with vertices 𝑉𝑡 and

edges 𝐸𝑡 . Let 𝐺𝑞 = (𝑉𝑞, 𝐸𝑞) be the query graph of interest. The

subgraph counting problem C(𝐺𝑞,𝐺𝑡) is to calculate the size of the

set of patterns P = {𝐺𝑝 |𝐺𝑝 ⊆ 𝐺𝑡 } in the target graph 𝐺𝑡 that are

isomorphic to the query graph 𝐺𝑞 , that is, ∃ bijection 𝑓 : 𝑉𝑝 ↦→ 𝑉𝑞
such that (𝑓 (𝑣), 𝑓 (𝑢)) ∈ 𝐸𝑞 if and only if (𝑣,𝑢) ∈ 𝐸𝑝 , denoted as

𝐺𝑝 � 𝐺𝑞 .

Subgraph counting can be categorized into induced and non-

induced counting [63]. A subgraph 𝐺𝑝 = (𝑉𝑝 , 𝐸𝑝) of 𝐺𝑡 is an in-

duced subgraph if it satisfies two conditions: 𝑉𝑝 ⊆ 𝑉𝑡 and for any

two vertices𝑢, 𝑣 ∈ 𝑉𝑝 , they are adjacent in𝐺𝑝 if and only if they are

adjacent in 𝐺𝑡 . This relationship is denoted as 𝐺𝑝 ⊆ 𝐺𝑡 . Without

loss of generality, we focus on the connected, induced subgraph

counting problem, following modern mainstream graph process-

ing frameworks [31, 58] and real-world applications [51, 84]. It

is also possible to obtain non-induced occurrences from induced

ones with a transformation [28]. Our GNN approach can natively

support graphs with node features and edge directions. But in align-

ment with exact and heuristic methods, we use undirected graphs

without node features in experiments to investigate the ability to

capture graph topology.

4 DESCO PIPELINE
In this section, we introduce the pipeline of DeSCo as shown in

Figure 3. To perform subgraph counting, DeSCo first performs

canonical partition to decompose the target graph to many canon-

ical neighborhood graphs. Then, neighborhood counting uses

the subgraph-based heterogeneous GNN to embed the query and

neighborhood graphs and performs a regression task to predict the

canonical count on each neighborhood. Finally, gossip propaga-
tion propagates neighborhood count predictions over the target

graph with learnable gates to further improve counting accuracy.

We will first introduce the model objective before elaborating on

each step.

4.1 Canonical Count Objective
Motivation. For commonly seen node-level tasks such as node

classification, each node is responsible for predicting its own node

value. However, for subgraph counting, since each pattern contains

multiple nodes, it is unclear which node should be responsible for

predicting the pattern’s occurrence. As illustrated in Figure 4, the

ambiguity can lead to missing or double-counting of the motif,

especially for queries with symmetric nodes, e.g. triangle. So we

propose the canonical count objective to eliminate the ambiguity

by assigning a specific canonical node responsible for each pattern.

The canonical node is used to represent the pattern position. The

canonical count is used as the local count prediction objective for

the GNN and gossip propagation.

(b) count 0 triangle
missing

0 triangle1 triangle

1
triangle

(a) count 3 triangle
double-counting

2

1

0

0 triangle

correct
(c) count 1 triangle

1
triangle

1
triangle

0
triangle

0
triangle

0
triangle

Figure 4:When counting, (a) double-counts and (b) misses the
triangle in the neighborhoods due to symmetry. (c) DeSCo
uses the canonical node to break symmetry and correctly
count the triangle. i○ are the node indices.

220

WSDM ’24, March 4–8, 2024, Merida, Mexico Tianyu Fu, Chiyue Wei, Yu Wang, & Rex Ying

(a) Target

Set each node in Target graph
as the canonical node
Query , choose d=2

Count pattern with
in the neighborhood

 of =25

Ă

(c) Canonical Count(b) Canonical Partition

canonical neighborhood

5

0

5

1

3

2

6

4

Rule1: ID ≤ , e.g. 5

0

5

1

3

2

6

4

Rule2: 's d-hop
neighborhood, i.e. d=2

Intersection
&

X

Figure 5: An example of canonical partition and canonical count. (a) Choose node 5 from the target graph as the canonical node
(red circle). (b) Canonical partition generates the corresponding canonical neighborhood graph. It performs an ID-restricted
breadth-first search to find the induced neighborhood that complies with both Rule 1 and Rule 2. (c) The corresponding
canonical count is defined by the number of patterns containing the canonical node in the canonical neighborhood. DeSCo’s
neighborhood counting phase predicts the canonical count for each canonical neighborhood.

To break the symmetry, we randomly assign node indices on the

target graph and define the canonical node.

Definition 4.1 (canonical node). Canonical node 𝑣𝑐 is the

node with the largest node index in the pattern.

𝑣𝑐 = max

𝐼
𝑉𝑝 (1)

Based on the index, we assign the count of the k-node pattern

to its canonical node and define canonical count.

Definition 4.2 (canonical count). Canonical count C𝑐 equals
the number of patterns that share the same canonical node.

C𝑐 (𝐺𝑞,𝐺𝑡 , 𝑣𝑐) = |{𝐺𝑝 ⊆ 𝐺𝑡 |𝐺𝑝 � 𝐺𝑞, 𝑣𝑐 = max

𝐼
𝑉𝑝 }| (2)

The canonical count C𝑐 (𝐺𝑞,𝐺𝑡 , 𝑣𝑐) differs from the regular count

C𝑐 , as it takes an additional variable - a node 𝑣𝑐 from the target

graph. As shown in Figure 4(c), a pattern is only counted by its

canonical node in C𝑐 . So the summation of C𝑐 over all nodes equals
the count of all patterns, C, as stated in Lemma 4.1 and proven in

Appendix A.1.

Lemma 4.1. The subgraph count C of query in target equals the

summation of the canonical count of query in target for all target

nodes.

C(𝐺𝑞,𝐺𝑡) =
∑︁
𝑣𝑐 ∈𝑉𝑡

C𝑐 (𝐺𝑞,𝐺𝑡 , 𝑣𝑐) (3)

Advantage. By predicting the canonical count of each node, DeSCo
can naturally get the pattern position distribution.

Lemma 4.1 allows the decomposition of the counting problem

into multiple canonical count objectives. We use the following

canonical partition to minimize the overhead for the decomposition.

4.2 Canonical Partition
Motivation. In Lemma 4.1, each canonical count C𝑐 is obtained

with the entire target graph 𝐺𝑡 . In order to overcome the high

computational complexity, we partition the target to reduce the

graph size for the canonical count. We observe that each canonical

count only depends on some local neighborhood structure as shown

in Figure 5(c). So we propose canonical partition to efficiently get

the small neighborhood.

Unique challenges of partition for canonical count. Commonly

used graph partition strategies include cutting edges [5] and tak-

ing d-hop neighborhoods [32]. However, edge-cutting breaks the

pattern structure, leading to incorrect count; D-hop neighborhoods

guarantee correctness, yet are unnecessarily large since patterns

exist in many overlapping neighborhoods.

Thus, we define canonical partition. It neglects the neighborhood

structure that does not influence the canonical count of each node.

Canonical partition uses node indices to filter nodes as illustrated

in Figure 5(a), (b).

Definition 4.3 (canonical partition). Canonical partition

P crops the index-restricted d-hop neighborhood around the center

node from the target graph. D(𝐺𝑡 , 𝑣𝑖 , 𝑣𝑐) means the shortest distance

between 𝑣𝑖 and 𝑣𝑐 on 𝐺𝑡 .

P(𝐺𝑡 , 𝑣𝑐 , 𝑑) = 𝐺𝑐 ,

s. t. 𝐺𝑐 ⊆ 𝐺𝑡 ,𝑉𝑐 = {𝑣𝑖 ∈ 𝑉𝑡 |D(𝐺𝑡 , 𝑣𝑖 , 𝑣𝑐) ≤ 𝑑, 𝑣𝑖 ≤ 𝑣𝑐 }
(4)

The graph𝐺𝑐 obtained by canonical partition is called the canoni-

cal neighborhood. Canonical neighborhoods can correctly substitute

the target graph in canonical count as proven in Appendix A.2. Thus,

we derive Theorem 1.

Theorem 1. The subgraph count of query in target equals the

summation of the canonical count of query in canonical neighbor-

hoods for all target nodes. Canonical neighborhoods are acquired with

canonical partition P, given any 𝑑 greater than the diameter of the

query.

C(𝐺𝑞,𝐺𝑡) =
∑︁
𝑣𝑐 ∈𝑉𝑡

C𝑐 (𝐺𝑞,P(𝐺𝑡 , 𝑣𝑐 , 𝑑), 𝑣𝑐),

𝑑 ≥ max

𝑣𝑖 ,𝑣𝑗 ∈𝑉𝑞
D(𝐺𝑞, 𝑣𝑖 , 𝑣 𝑗)

(5)

In DeSCo, given the target graph 𝐺𝑡 , it iterates over all nodes 𝑣

of the target𝐺𝑡 and divides it into a set of canonical neighborhoods

𝐺𝑣𝑐 with canonical partition. In practice, we set𝑑 as themaximum

221

DeSCo: Towards Generalizable and Scalable Deep Subgraph Counting WSDM ’24, March 4–8, 2024, Merida, Mexico

type Ⅱ

type Ⅰ

Figure 6: Proposed SHMP. Embeddedwith regularMP, graphs
𝐺1 and𝐺2 are indistinguishable.While embeddedwith SHMP,
𝐺2 is successfully distinguished with six type II node embed-
dings, demonstrating better expressive power of SHMP.

diameter of query graphs to meet the requirements of Theorem.1.

See Appendix A.3 for the implementation of P(𝐺𝑡 , 𝑣𝑐 , 𝑑).
Advantage. Canonical partition dramatically reduces the worst and

average complexity of the subgraph counting problem by a factor of

1/10
70

and 1/10
11
, thanks to the sparse nature of real-world graphs

(discussed in Appendix A.4). Furthermore, diverse target graphs can

have similar and limited kinds of canonical neighborhoods. So it

boosts the generalization power of DeSCo as shown in Section 5.4.

This divide-and-conquer scheme not only greatly reduces the

complexity of each GNN prediction, but also makes it possible

to predict the count distribution over the entire graph. After the

canonical partition, DeSCo uses the following model to predict the

canonical count for each decomposed neighborhood.

4.3 Neighborhood Counting
After canonical partition, GNNs are used to predict the canonical

count 𝐶𝑐 (𝐺𝑞,𝐺𝑣𝑐 , 𝑣𝑐) on any canonical neighborhood 𝐺𝑣𝑐 in the

neighborhood counting stage. The canonical neighborhood and

the query are separately embedded using GNNs. The embeddings

are passed to a multilayer perceptron to predict the canonical count.

Motivation. Previous work [20] shows message passing (MP)

GNNs confuse certain graph structures and harm the counting accu-

racy. To enhance GNN’s expressive power while remaining scalable,

we propose the Subgraph-based Heterogeneous Message Passing

(SHMP) framework. Inspired by [52], SHMP incorporates subgraph

information to boost the expressive power. In the meantime, SHMP

avoids using super-node [52] or message permutation [20] that are

computationally expensive during message passing.

Neighborhood counting with SHMP. To embed the input graph,

SHMP uses small subgraph structures to categorize edges into dif-

ferent edge types, and uses different learnable weights for each

edge type.

Definition 4.4 (subgraph-based heterogeneous message

passing). The SHMP computes each node’s representation with equa-

tion 6. Here 𝑘 denotes the layer; 𝛾 denotes the update function; 𝜙𝑘
ℎ

denotes the message function of the h-th edge type; 𝑁ℎ (𝑖) denotes
nodes that connect to node i with the h-th edge type;Agg andAgg

′
are

the permutation invariant aggregation function such as summation.

x(𝑘)
𝑖

= 𝛾 (𝑘)
(
x(𝑘−1)
𝑖

,Agg′
ℎ∈𝐻 (𝑀ℎ)

)
𝑀ℎ = Agg𝑗∈𝑁ℎ (𝑖)

(
𝜙
(𝑘)
ℎ
(x(𝑘−1)

𝑖
, x(𝑘−1)

𝑗
, e𝑗,𝑖)

) (6)

Note that MP defined by major GNN frameworks [27, 78] is just

a special case of SHMP if only one edge type is derived with the

subgraph structure. We prove that SHMP can exceed the upper

bound of MP in terms of expressiveness in Appendix B.1.

For example, Figure 6 demonstrates that triangle-based hetero-

geneous message passing has better expressive power. Regular

MPGNNs fail to distinguish different d-regular graphs 𝐺1 and 𝐺2

because of their identical type I messages and embeddings, which is

a common problem of MPGNNs [92]. SHMP, however, can discrim-

inate the two graphs by giving different embeddings. The edges are

first categorized into two edge types based on whether they exist in

any triangles (edges are colored purple if they exist in any triangles).

Since no triangles exist in 𝐺2, all of its nodes still receive type I

messages. While some nodes of 𝐺1 now receive type II messages

with two purple messages and one gray message in each layer. As

a result, the model acquires not only the adjacency information be-

tween the message sender and receiver, but also information among

their neighbors. Such subgraph structural information improves

expressiveness by incorporating high-order information in both

the query and the target. In DeSCo, the canonical node of the neigh-

borhood is also treated as a special node type in the heterogeneous

message passing.

Advantage. The triangle-based SHMP reduces the typical error of

MPGNNs by 68% as discussed in Appendix B.2, while remaining

polynomial runtime complexity of 𝑂 (𝑉 + 𝐸3/2) as discussed in

Appendix F. The comparisonwith other expressive GNNs are shown

in Table 7 and Appendix B.3.

The summation of the neighborhood counts (the predicted canon-

ical counts of all canonical neighborhoods) can serve as the final

subgraph count prediction. The counts also show the position of

patterns. But to further improve counting accuracy, we pass the

neighborhood counts to the gossip propagation stage.

4.4 Gossip Propagation
Given the count predictions 𝐶𝑐 output by the GNN, DeSCo uses

gossip propagation to improve the prediction quality, enforcing

different homophily and antisymmetry inductive biases for different

queries. Gossip propagation uses another GNN to model the error

of neighborhood count. It uses the predicted 𝐶𝑐 as input, and the

canonical counts 𝐶𝑐 as the supervision for corresponding nodes in

the target graph.

Motivation. To further improve the counting accuracy, we identify

two inductive biases: Homophily and Antisymmetry. 1) Homophily:

Adjacent nodes within graphs share similar graph structures, re-

sulting in analogous canonical counts (Figure 2). This phenomenon,

termed homophily of canonical counts, stands out. 2) Antisymmetry:

Nodes with similar neighborhood structures, per Definition 4.2,

exhibit higher canonical counts for those with larger node indices.

See right part of Figure 3 for an example. Details are in Appendix C.

We observe a negative correlation between Antisymmetry ratio

and Homophily in different queries, as depicted in Figure 14 in

Appendix C. This observation inspires us to learn this relationship

within models.

The edges’ direction in message passing can control the ho-

mophily and antisymmetry properties of the graph.With undirected

222

WSDM ’24, March 4–8, 2024, Merida, Mexico Tianyu Fu, Chiyue Wei, Yu Wang, & Rex Ying

x0.9

x0.1

P=0.9

undirected
for homophily

directed
for antisymmetry

x0.5

x0.5

P=0.5

Figure 7: Proposed learnable gates in the gossip propagation
model balance the influence of homophily and antisymmetry
by controlling message directions.

edges, message propagation is a special low-pass filter [55], en-

hancing the homophily property of the node values. With directed

edges pointing from small-index nodes to large-index nodes, mes-

sage propagation accumulates value in large-index nodes, which

enhances the antisymmetry property.

Gossip propagation with learnable gates. To learn the edge

direction that correctly emphasizes homophily or antisymmetry,

we propose the gossip propagation model as shown in Figure 7. It

multiplies a learnable gate 𝑃 for the message sent from the node

with the smaller index, and 1 − 𝑃 for the reversed one. 𝑃 is learned

from the query embedding. For different queries, 𝑃 ranges from 0

to 1 to balance the influence of homophily and antisymmetry. When

𝑃 → 0.5, messages from the smaller indexed node and the reversed

one are weighed equally. So it simulates undirectedmessage passing

that stress homophily by taking the average of adjacent node values.

When the gate value moves away from 0.5, the message from one

end of the edge is strengthened. For example, when 𝑃 → 1, the node

values only accumulate from nodes with smaller indices to nodes

with larger ones. So that it simulates directed message passing that

stress antisymmetry of the transitive partial order of node indices.

The messages of MPGNNs are multiplied with 𝑔 𝑗𝑖 on both edge

directions. With learnable gates, the model can balance the effects

of homophily and antisymmetry for further performance improve-

ment.

x(𝑘)
𝑖

= 𝛾 (𝑘)
(
x(𝑘−1)
𝑖

,Agg𝑗∈𝑁 (𝑖)𝑔 𝑗𝑖 · 𝜙 (𝑘)
(
x(𝑘−1)
𝑖

, x(𝑘−1)
𝑗

, e𝑗,𝑖
))

𝑔 𝑗𝑖 =

{
𝑃 𝑣 𝑗 ≤ 𝑣𝑖

1 − 𝑃 𝑣 𝑗 > 𝑣𝑖

(7)

Final count prediction. The neighborhood count with gossip

propagation is a more accurate estimation of the canonical count.

The summation of the neighborhood counts is the unbiased esti-

mation of subgraph count on the whole target graph as Theorem 1

states.

5 EXPERIMENTS
We compare the performance of DeSCo with state-of-the-art neural

subgraph counting methods, as well as the approximate heuris-

tic method. Our evaluation showcases the scalability and gener-

alization capabilities of DeSCo across diverse and larger target

datasets, contrasting with prior neural methods that mostly focused

Dataset #graphs Avg. #nodes Avg. #edges

Synthetic 1827 134.91 381.58

MUTAG 188 17.93 19.79

COX2 467 41.22 43.45

ENZYMES 600 32.63 62.14

IMDB-BINARY 1000 19.77 96.53

MSRC-21 563 77.52 198.32

FIRSTMM-DB 41 1.3K 3.0K

CiteSeer 1 3.3K 4.5K

Cora 1 2.7K 5.4K

Table 1: Graph statistics of datasets used in experiments.

on smaller datasets. We also demonstrate the runtime advantage of

DeSCo compared to recent exact and approximate heuristic meth-

ods. Extensive ablation studies further show the benefit of each

component of DeSCo.

5.1 Experimental Setup
Datasets. Compared with previous neural methods, our evalua-

tion extends to larger datasets across various domains, such as

chemistry (MUTAG [22], COX2 [65]), biology (ENZYMES [13]),

social networks (IMDB-BINARY [87]), computer vision (MSRC-21,

FIRSTMM-DB [53]), and citation networks (CiteSeer, Cora [50]). A

synthetic dataset, representing mixed graph characteristics, is also

included (Table 1). Additional dataset details are in Appendix D.

Generalization framework. Our framework, trained on the Syn-

thetic dataset with standard queries (size 3 − 5), enables subgraph

counting across diverse datasets and graph.

Baselines. DeSCo is compared with SOTA subgraph counting

GNNs: LRP [20], DIAMNet [45], DMPNN [46], the heuristic MO-

TIVO [15], and exact methods VF2 [21] and IMSM [72]. Optimal

configurations for each method are detailed in Appendix D.4 and F.

Evaluation metric. Evaluation utilizes mean square error (MSE)

and mean absolute error (MAE) for subgraph count predictions,

with MSE normalized by ground truth variance [20].

5.2 Neural Counting
Subgraph counting. Table 2 highlights DeSCo’s performance in

subgraph count prediction across twenty-nine standard queries of

size 3 − 5. It outperforms the best neural baseline and approximate

heuristic method in normalized MSE by 49.7× and 17.5×, and in

MAE by 8.4× and 4.1× respectively. The model shows robust per-

formance even on dense graphs which is challenging for neural

method, like IMDB-BINARY. Unlike the heuristic method with ex-

ponential complexity, DeSCo maintains linear runtime efficiency.

Additional q-error metric analysis is in Appendix G.1.

Position distribution. DeSCo innovates in pattern position pre-

diction, achieving 3.8 × 10
−3

normalized MSE, further detailed in

Appendix E.2.

5.3 Scalability
Large queries. We analyze 16 frequently appearing queries for

sizes 6 to 13 from ENZYMES (details in Appendix D.2). All models,

except DeSCo (zero-shot), are fine-tuned on larger queries using

223

DeSCo: Towards Generalizable and Scalable Deep Subgraph Counting WSDM ’24, March 4–8, 2024, Merida, Mexico

Dataset MUTAG COX2 ENZYMES IMDB-BINARY MSRC-21

Query-Size 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5

normalized MSE

MOTIVO 2.9E-1 6.7E-1 1.2E+0 1.6E-1 3.4E-1 5.9E-1 1.6E-1 1.9E-1 3.0E-1 2.7E-2 3.9E-2 5.0E-2 4.8E-2 7.2E-2 9.5E-2

LRP 1.5E-1 2.7E-1 3.5E-1 1.4E-1 2.9E-2 1.1E-1 8.5E-1 5.4E-1 6.2E-1 inf inf inf 2.4E+0 1.4E+0 1.1E+0

DIAMNet 4.1E-1 5.6E-1 4.7E-1 1.1E+0 7.8E-1 7.2E-1 1.4E+0 1.1E+0 1.0E+0 1.1E+0 1.0E+0 1.0E+0 2.7E+0 1.6E+0 1.3E+0

DMPNN 6.1E+2 6.6E+2 3.0E+2 2.6E+3 2.4E+3 3.0E+3 2.9E+3 1.4E+3 1.2E+3 2.1E+4 1.3E+2 1.4E+2 1.1E+4 1.3E+3 4.1E+2

DeSCo 2.2E-3 7.5E-4 6.0E-3 6.6E-4 6.3E-4 4.9E-3 5.4E-3 5.9E-2 5.3E-2 8.5E-3 2.1E-1 4.5E-1 2.5E-3 3.8E-3 8.7E-2

MAE

MOTIVO 4.9E+0 5.1E+0 3.3E+0 8.3E+0 9.4E+0 7.3E+0 1.7E+1 2.3E+1 2.6E+1 4.7E+1 1.6E+2 6.1E+2 4.1E+1 9.5E+1 1.7E+2

LRP 3.8E+0 5.1E+0 4.5E+0 9.5E+0 4.0E+0 6.3E+0 4.3E+1 4.0E+1 3.7E+1 inf inf inf 3.2E+2 4.6E+2 5.9E+2

DIAMNet 8.3E+0 7.9E+0 4.2E+0 3.0E+1 1.7E+1 1.2E+1 5.4E+1 5.1E+1 4.0E+1 2.9E+2 8.3E+2 2.6E+3 3.4E+2 4.9E+2 6.3E+2

DMPNN 6.8E+2 6.9E+2 2.4E+2 3.6E+3 4.3E+3 3.8E+3 4.8E+3 5.8E+3 6.0E+3 1.7E+5 2.2E+5 2.8E+5 3.4E+4 4.6E+4 5.7E+4

DeSCo 5.0E-1 1.8E-1 2.9E-1 6.1E-1 4.4E-1 7.7E-1 3.6E+0 1.1E+1 9.9E+0 2.4E+1 3.0E+2 1.6E+3 1.0E+1 2.5E+1 1.3E+2

Table 2: Normalized MSE and MAE performance of approximate heuristic and neural methods on subgraph counting of
twenty-nine standard queries.

0 51 2 3 4
normalized square error

0.6

0.8

1.0

0 51 2 3 4
normalized square error

0.6

0.8

1.0

0 51 2 3 4
normalized square error

0.6

0.8

1.0 MOTIVO
LRP
DIAMNet
DeSCo(zero-shot)
DeSCo

COX2 ENZYMESMUTAG

pe
rc
en
ta
ge

Figure 8: The accumulative distributions of normalized square error of large queries (size up to 13) on three target datasets.
The x-axis is clipped at 5. Given any square error tolerance bound (x-axis), DeSCo has the highest percentage of predictions
that meet the bound (y-axis). DeSCo(zero-shot) generalizes to unseen queries with competitive performance over specifically
trained baselines.

the synthetic dataset. DeSCo (zero-shot) demonstrates its capabil-

ity to generalize to unseen queries. The square error distribution

for each query-target pair is in Figure 8, with numeric results in

Appendix G.2.

Large target. In testing on large target graphs (Table 3), DeSCo

surpasses other neural methods, handling up to 3.8×10
6
and 3.3×10

7

ground truth counts on CiteSeer and Cora, respectively. LRP’s

results, being infinite, are excluded from the table.

5.4 Generalization Ability
Synthetic Dataset. Using the Synthetic dataset, we showcase De-

SCo’s generalization. Real-world graphs’ diversity in structure (Fig-

ure 9 (a)) contrasts with their local substructure similarities (Figure 9

(b)). The synthetic dataset’s coverage of real-world graph charac-

teristics (Figure 9 (c)) confirms DeSCo’s training effectiveness and

generalizability.

Generalization. DeSCo, pre-trained on the Synthetic dataset and

tested on varied real-world datasets, demonstrates superior accu-

racy and generalization compared to models trained on existing

datasets (Table 4). This underscores its robustness across different

domains.

Dataset CiteSeer Cora

Query-Size 3 4 5 3 4 5

normalized MSE

DIAMNet 2.0E+0 1.5E+0 1.2E+0 1.0E+10 3.2E+7 3.7E+4

DMPNN 9.5E+4 2.5E+2 6.8E+1 1.8E+5 1.1E+2 6.7E+1

DeSCo 3.5E-5 9.7E-2 1.6E-1 4.2E-3 2.1E-1 6.3E-2

MAE

DIAMNet 1.1E+4 6.0E+4 3.6E+05 2.1E+9 1.6E+9 8.3E+8

DMPNN 6.1E+6 7.6E+6 8.7E+6 1.8E+7 2.4E+7 3.0E+7

DeSCo 6.0E+1 1.2E+4 1.1E+5 1.3E+3 7.3E+4 5.4E+5

Table 3: Normalized MSE and MAE performance of neural
methods on large targets with standard queries.

5.5 Ablation Study
In assessing DeSCo’s components, the ablation study reveals signif-

icant contributions of each part. We demonstrate the MAE results

on three datasets (Figure 10) and the geometric mean of normalized

MSE on eight datasets (Figure 1), supported by numeric data in

Appendix E.

224

WSDM ’24, March 4–8, 2024, Merida, Mexico Tianyu Fu, Chiyue Wei, Yu Wang, & Rex Ying

(a) (b) (c)

Figure 9: Visualization of statistics of diverse graph datasets. The embedding is obtained by projecting the vectors of graph
statistics via t-SNE. (a) Each point represents a graph. (b) Each point represents a canonical neighborhood. (c) Canonical
neighborhoods of the synthetic dataset cover most canonical neighborhoods of real-world graphs in terms of data distribution.

Test-Set MUTAG MSRC-21 FIRSTMM-DB

Query-Size 3 4 5 3 4 5 3 4 5

Existing 6.5E-3 3.4E-3 8.7E-2 1.1E+1 1.9E+0 1.1E+0 1.1E-1 1.1E-1 1.6E-1

Synthetic 2.3E-3 8.4E-4 6.5E-3 2.5E-3 3.8E-3 8.7E-2 2.1E-3 3.6E-2 5.4E-2

Table 4: NormalizedMSE performancewith different training
datasets. When pre-training on existing datasets, MSRC-21
uses MUTAG; CiteSeer uses Cora; FIRSTMM-DB uses Cite-
Seer.

0.0

0.5

1.0

0.3
0.4

3E-02
0.3

0.10.20.1

0.4
0.2

w/o SHMP w SHMP

0.0

0.5

1.0

3 4 5 3 4 5 3 4 5

1.01.00.9
1.1

0.7
0.60.6

0.2
0.4

w/o propagation w propagation

0.0

0.5

1.0

4E-257E-211E-163E-021E-024E-020.10.20.2

w/o partition w partition

MUTAG MSRC-21 Cora

m
ea

n
ab

so
lu

te
 e

rro
r

dataset

(a)

(b)

(c)

query size

1.1

1

Figure 10: MAE performance with and without canonical
partition, SHMP and gossip propagation.

Ablation of canonical partition. Removing the canonical par-

tition and training DeSCo for subgraph count on whole targets

(like other neural baselines) indicates the partition’s vital role in

error reduction and DeSCo’s superiority over existing neural meth-

ods (Figure 1). Canonical partition in DeSCo brings a 1.3 ∗ 10
10×

improvement in normalized MSE and 8.8 ∗ 10
4× in MAE.

Ablation of SHMP. SHMP enhances GraphSAGE’s performance by

transitioning to heterogeneous message passing, using triangles as

the categorizing subgraph (Figure 6). SHMP reduces the normalized

MSE by 27× and MAE by 5.8× over GraphSAGE. Further more,

when compared with expressive GNNs, including GIN and ID-GNN,

SHMP demonstrate a 24× and 14× reduction in normalized MSE,

as well as a 5.3×, 3.9× reduction MAE, as detailed in Table 7.

Ablation of gossip propagation. Comparing direct summation

of neighborhood counts with summation post-gossip propagation

highlights its effectiveness. Gossip propagation further reduces

normalized MSE and MAE by 1.8× and 1.4×, respectively.

0

60

120

180

240

3 4 5 6 7 8 9 10 11 12 13

ru
nt

im
e

(s
ec

on
d)

query size

VF2 IMSM MOTIVO DeSCo0

60

120

180

240

3 4 5 6 7 8 9 10 11 12 13

ru
nt

im
e(

se
co

nd
)

query size

VF2 IMSM MOTIVO LRP DeSCo

Figure 11: The runtime comparison between exact, heuristic
approximate, neural methods and DeSCo. All tested on the
ENZYMES dataset.

5.6 Runtime Comparison
Figure 11 illustrates the runtime of each method under a four-

minute limit. Exact methods VF2 and IMSM exhibit exponential

runtime increases due to the #P hard nature of subgraph count-

ing. For the approximate heuristic method MOTIVO, exponential

growth mainly stems from its coloring phase. In contrast, neu-

ral methods LRP and DeSCo show polynomial scalability. DeSCo

achieves a 5.3× speedup over LRP, as it avoids heavy node feature

permutations. Further runtime analysis is available in Appendix F.

6 CONCLUSION
We propose DeSCo, a neural network based pipeline for general-

izable and scalable subgraph counting. With canonical partition,

subgraph-based heterogeneous message passing, and gossip propa-

gation, DeSCo accurately and efficiently predicts counts for both

large queries and targets. It demonstrates magnitudes of improve-

ments in mean square error. It additionally provides the important

position distribution of patterns that previous works cannot.

ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation

of China (No. U19B2019, 62325405, U21B2031, 61832007, 62104128,

62204164), and Beijing National Research Center for Information

Science and Technology (BNRist), and Tsinghua-Meituan Joint In-

stitute for Digital Life.

225

DeSCo: Towards Generalizable and Scalable Deep Subgraph Counting WSDM ’24, March 4–8, 2024, Merida, Mexico

ETHICAL CONSIDERATIONS
In the realm of graph analysis, DeSCo stands as a fundamental tool

rather than a specific application-driven solution. While the direct

potential for DeSCo to induce negative societal impacts is minimal,

it remains prudent to acknowledge and address potential adverse

outcomes.

Accuracy. Similar to other non-exact counting methods, DeSCo

cannot ensure absolute prediction correctness. Despite thorough

testing on extensive real-world datasets, which has showcased sig-

nificant error reductions and exceptional generalization capabilities,

the potential for inaccurate predictions, especially for outlier graphs,

remains a possibility. Therefore, it’s advisable to exercise caution

and validate basic graph statistics, such as maximum degree, before

applying the DeSCo method.

Privacy. DeSCo introduces a breakthrough in accurately count-

ing large subgraphs, previously unattainable. Moreover, it reveals

the positional distribution of these counts. As subgraph counting

finds applications in recommendation systems, social network anal-

ysis, and other domains, there’s potential for corporations and

governments to glean intelligence that was once inaccessible. This

advancement could inadvertently compromise user privacy if not

subjected to proper oversight. To mitigate this, it’s essential to

consider enforcing relevant regulations should corresponding tech-

nologies be developed.

REFERENCES
[1] Balázs Adamcsek, Gergely Palla, Illés J. Farkas, Imre Derényi, and Tamás Vicsek.

2006. CFinder: locating cliques and overlapping modules in biological networks.

Bioinformatics 22, 8 (2006), 1021–1023.

[2] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. 2015. Effi-

cient graphlet counting for large networks. In 2015 IEEE International Conference

on Data Mining. IEEE, 1–10.

[3] Leman Akoglu and Christos Faloutsos. 2013. Anomaly, event, and fraud detection

in large network datasets. In Proceedings of the sixth ACM international conference

on Web search and data mining. ACM, 773–774.

[4] Réka Albert and Albert-László Barabási. 2000. Topology of evolving networks:

local events and universality. Physical review letters 85, 24 (2000), 5234.

[5] David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner. 2013.

Graph partitioning and graph clustering. Vol. 588. American Mathematical Society

Providence, RI.

[6] Gary D. Bader and Christopher W. V. Hogue. 2003. An automated method

for finding molecular complexes in large protein interaction networks. BMC

Bioinformatics 4, 1 (2003), 2–2.

[7] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. science 286, 5439 (1999), 509–512.

[8] Jordi Bascompte and Carlos J Melián. 2005. Simple trophic modules for complex

food webs. Ecology 86, 11 (2005), 2868–2873.

[9] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson

correlation coefficient. In Noise reduction in speech processing. Springer, 1–4.

[10] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organi-

zation of complex networks. Science 353, 6295 (2016), 163–166.

[11] Bibek Bhattarai, Hang Liu, and H Howie Huang. 2019. Ceci: Compact embed-

ding cluster index for scalable subgraph matching. In Proceedings of the 2019

International Conference on Management of Data. 1447–1462.

[12] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Al-

fredo Ferro. 2013. A subgraph isomorphism algorithm and its application to

biochemical data. BMC bioinformatics 14, 7 (2013), 1–13.

[13] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,

Alex J Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via graph

kernels. Bioinformatics 21, suppl_1 (2005), i47–i56.

[14] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro

Panconesi. 2018. Motif counting beyond five nodes. ACM Transactions on

Knowledge Discovery from Data (TKDD) 12, 4 (2018), 1–25.

[15] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. 2019. Motivo: fast

motif counting via succinct color coding and adaptive sampling. Proceedings of

the VLDB Endowment 12, 11 (2019), 1651–1663.

[16] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. 2021. Faster motif

counting via succinct color coding and adaptive sampling. ACM Transactions on

Knowledge Discovery from Data (TKDD) 15, 6 (2021), 1–27.

[17] Gunnar Brinkmann, Kris Coolsaet, Jan Goedgebeur, and Hadrien Mélot. 2013.

House of Graphs: a database of interesting graphs. Discrete Applied Mathematics

161, 1-2 (2013), 311–314.

[18] Raphaël Charbey and Christophe Prieur. 2019. Stars, holes, or paths across your

Facebook friends: A graphlet-based characterization of many networks. Network

Science 7, 4 (2019), 476–497.

[19] Jingji Chen and Xuehai Qian. 2020. Dwarvesgraph: A high-performance graph

mining system with pattern decomposition. arXiv preprint arXiv:2008.09682

(2020).

[20] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. 2020. Can graph

neural networks count substructures? ArXiv abs/2002.04025 (2020).

[21] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (sub)

graph isomorphism algorithm for matching large graphs. IEEE transactions on

pattern analysis and machine intelligence 26, 10 (2004), 1367–1372.

[22] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shus-

terman, and Corwin Hansch. 1991. Structure-activity relationship of mutagenic

aromatic and heteroaromatic nitro compounds. correlation with molecular or-

bital energies and hydrophobicity. Journal of medicinal chemistry 34, 2 (1991),

786–797.

[23] Sofie Demeyer, Tom Michoel, Jan Fostier, Pieter Audenaert, Mario Pickavet, and

Piet Demeester. 2013. The index-based subgraph matching algorithm (ISMA):

fast subgraph enumeration in large networks using optimized search trees. PloS

one 8, 4 (2013), e61183.

[24] Evan Donato, Ming Ouyang, and Cristian Peguero-Isalguez. 2018. Triangle

Counting with A Multi-Core Computer. 2018 IEEE High Performance extreme

Computing Conference (HPEC) (2018), 1–7.

[25] Paul Erdős, Alfréd Rényi, et al. 1960. On the evolution of random graphs. Publ.

Math. Inst. Hung. Acad. Sci 5, 1 (1960), 17–60.

[26] Katherine Faust. 2010. A puzzle concerning triads in social networks: Graph

constraints and the triad census. Social Networks 32, 3 (2010), 221–233.

[27] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and

Manifolds.

[28] Peter Floderus, Mirosław Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. 2015.

Induced subgraph isomorphism: Are some patterns substantially easier than

others? Theoretical Computer Science 605 (2015), 119–128.

[29] Tianyu Fu, Ziqian Wan, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. Less-

Mine: Reducing Sample Space and Data Access for Dense Pattern Mining. In 2020

IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–7.

[30] Chao Gao and John Lafferty. 2017. Testing for global network structure using

small subgraph statistics. arXiv preprint arXiv:1710.00862 (2017).

[31] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,

dynamics, and function using NetworkX. Technical Report. Los Alamos National

Lab.(LANL), Los Alamos, NM (United States).

[32] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30

(2017).

[33] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han.

2019. Efficient subgraphmatching: Harmonizing dynamic programming, adaptive

matching order, and failing set together. In Proceedings of the 2019 International

Conference on Management of Data. 1429–1446.

[34] Huahai He and Ambuj K Singh. 2008. Graphs-at-a-time: query language and

access methods for graph databases. In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data. 405–418.

[35] Paul W Holland and Samuel Leinhardt. 1976. Local structure in social networks.

Sociological methodology 7 (1976), 1–45.

[36] Petter Holme and Beom Jun Kim. 2002. Growing scale-free networks with tunable

clustering. Physical review E 65, 2 (2002), 026107.

[37] Alon Itai and Michael Rodeh. 1977. Finding a minimum circuit in a graph. In

Proceedings of the ninth annual ACM symposium on Theory of computing. 1–10.

[38] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir

Braverman, and Ion Stoica. 2018. {ASAP}: Fast, approximate graph pattern

mining at scale. In 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18). 745–761.

[39] Madhav Jha, C Seshadhri, and Ali Pinar. 2015. Path sampling: A fast and prov-

able method for estimating 4-vertex subgraph counts. In Proceedings of the 24th

international conference on world wide web. 495–505.

[40] Yuval Kalish and Garry Robins. 2006. Psychological predispositions and network

structure: The relationship between individual predispositions, structural holes

and network closure. Social networks 28, 1 (2006), 56–84.

[41] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. 2004. Efficient sampling

algorithm for estimating subgraph concentrations and detecting network motifs.

Bioinformatics 20, 11 (2004), 1746–1758.

[42] AA Leman and Boris Weisfeiler. 1968. A reduction of a graph to a canonical

form and an algebra arising during this reduction. Nauchno-Technicheskaya

Informatsiya 2, 9 (1968), 12–16.

226

WSDM ’24, March 4–8, 2024, Merida, Mexico Tianyu Fu, Chiyue Wei, Yu Wang, & Rex Ying

[43] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:

Densification and shrinking diameters. ACM transactions on Knowledge Discovery

from Data (TKDD) 1, 1 (2007), 2–es.

[44] Wenqing Lin, Xiaokui Xiao, Xing Xie, and Xiao-Li Li. 2016. Network motif

discovery: A GPU approach. IEEE transactions on knowledge and data engineering

29, 3 (2016), 513–528.

[45] Xin Liu, Haojie Pan, Mutian He, Yangqiu Song, and Xin Jiang. 2020. Neural Sub-

graph Isomorphism Counting. Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining (2020).

[46] Xin Liu and Yangqiu Song. 2022. Graph convolutional networks with dual mes-

sage passing for subgraph isomorphism counting and matching. In Proceedings

of the AAAI Conference on Artificial Intelligence, Vol. 36. 7594–7602.

[47] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. 2019.

Provably powerful graph networks. Advances in neural information processing

systems 32 (2019).

[48] Daniel Mawhirter, Sam Reinehr, Connor Holmes, Tongping Liu, and Bo Wu.

2019. Graphzero: Breaking symmetry for efficient graph mining. arXiv preprint

arXiv:1911.12877 (2019).

[49] Daniel Mawhirter and Bo Wu. 2019. Automine: harmonizing high-level abstrac-

tion and high performance for graph mining. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles. 509–523.

[50] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.

2000. Automating the construction of internet portals with machine learning.

Information Retrieval 3, 2 (2000), 127–163.

[51] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,

and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.

Science 298, 5594 (2002), 824–827.

[52] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric

Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and Leman Go

Neural: Higher-order Graph Neural Networks. ArXiv abs/1810.02244 (2019).

[53] Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting.

2016. Propagation kernels: efficient graph kernels from propagated information.

Machine Learning 102 (2016), 209–245.

[54] Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. 2020. k-hop

Graph Neural Networks. Neural networks : the official journal of the International

Neural Network Society 130 (2020), 195–205.

[55] Hoang Nt and Takanori Maehara. 2019. Revisiting graph neural networks: All

we have is low-pass filters. arXiv preprint arXiv:1905.09550 (2019).

[56] Mark Ortmann and Ulrik Brandes. 2017. Efficient orbit-aware triad and quad

census in directed and undirected graphs. Applied network science 2, 1 (2017),

1–17.

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances

in neural information processing systems 32 (2019).

[58] Tiago P. Peixoto. 2014. The graph-tool python library. figshare (2014). https:

//doi.org/10.6084/m9.figshare.1164194

[59] Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. 2017. Escape: Efficiently count-

ing all 5-vertex subgraphs. In Proceedings of the 26th international conference on

world wide web. 1431–1440.

[60] Christina Prell and John Skvoretz. 2008. Looking at social capital through triad

structures. Connections 28, 2 (2008), 4–16.

[61] Ronald C Read and Robin J Wilson. 1998. An atlas of graphs. Vol. 21. Clarendon

Press Oxford.

[62] Bernardete Ribeiro, Ning Chen, and Alexander Kovacec. 2017. Shaping graph

pattern mining for financial risk. Neurocomputing (2017).

[63] Pedro Ribeiro, Pedro Paredes,Miguel EP Silva, David Aparicio, and Fernando Silva.

2021. A survey on subgraph counting: concepts, algorithms, and applications

to network motifs and graphlets. ACM Computing Surveys (CSUR) 54, 2 (2021),

1–36.

[64] Pedro Ribeiro and Fernando Silva. 2010. Efficient subgraph frequency estimation

with g-tries. In International Workshop on Algorithms in Bioinformatics. Springer,

238–249.

[65] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Reposi-

tory with Interactive Graph Analytics and Visualization. In AAAI. https:

//networkrepository.com

[66] Tanay Kumar Saha and Mohammad Al Hasan. 2015. Finding network motifs

using MCMC sampling. In Complex Networks VI. Springer, 13–24.

[67] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai. 2020. Graphpi: High per-

formance graph pattern matching through effective redundancy elimination.

In SC20: International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE, 1–14.

[68] Neil James Alexander Sloane. 2014. A handbook of integer sequences. Academic

Press.

[69] Ricard V Solé and Sergi Valverde. 2008. Spontaneous emergence of modularity

in cellular networks. Journal of The Royal Society Interface 5, 18 (2008), 129–133.

[70] Murat Cihan Sorkun, Abhishek Khetan, and Süleyman Er. 2019. AqSolDB, a

curated reference set of aqueous solubility and 2D descriptors for a diverse set of

compounds. Scientific data 6, 1 (2019), 143.

[71] Olaf Sporns, Rolf Kötter, and Karl J Friston. 2004. Motifs in brain networks. PLoS

biology 2, 11 (2004), e369.

[72] Shixuan Sun and Qiong Luo. 2020. In-memory subgraph matching: An in-depth

study. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-

agement of Data. 1083–1098.

[73] Ichigaku Takigawa and Hiroshi Mamitsuka. 2013. Graph mining: procedure,

application to drug discovery and recent advances. Drug discovery today 18, 1-2

(2013), 50–57.

[74] Charalampos E Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. 2017.

Scalable motif-aware graph clustering. In Proceedings of the 26th International

Conference on World Wide Web. 1451–1460.

[75] Shahadat Uddin, Liaquat Hossain, et al. 2013. Dyad and triad census analysis of

crisis communication network. Social Networking 2, 01 (2013), 32.

[76] Leslie G Valiant. 1979. The complexity of enumeration and reliability problems.

SIAM J. Comput. (1979).

[77] Sergi Valverde and Ricard V Solé. 2005. Network motifs in computational graphs:

A case study in software architecture. Physical Review E 72, 2 (2005), 026107.

[78] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,

Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang

Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-

Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315

(2019).

[79] Pinghui Wang, Junzhou Zhao, Xiangliang Zhang, Zhenguo Li, Jiefeng Cheng,

John CS Lui, Don Towsley, Jing Tao, and Xiaohong Guan. 2017. MOSS-5: A

fast method of approximating counts of 5-node graphlets in large graphs. IEEE

Transactions on Knowledge and Data Engineering 30, 1 (2017), 73–86.

[80] StanleyWasserman, Katherine Faust, et al. 1994. Social network analysis: Methods

and applications. (1994).

[81] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-

world’networks. nature 393, 6684 (1998), 440–442.

[82] Melanie Weber. 2019. Curvature and Representation Learning: Identifying Em-

bedding Spaces for Relational Data.

[83] Sebastian Wernicke and Florian Rasche. 2006. FANMOD: a tool for fast network

motif detection. Bioinformatics 22, 9 (2006), 1152–1153.

[84] Elisabeth Wong, Brittany Baur, Saad Quader, and Chun-Hsi Huang. 2012. Biolog-

ical network motif detection: principles and practice. Briefings in bioinformatics

13, 2 (2012), 202–215.

[85] Peng Wu, Junfeng Wang, and Bin Tian. 2018. Software homology detection with

software motifs based on function-call graph. IEEE Access 6 (2018), 19007–19017.

[86] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[87] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings

of the 21th ACM SIGKDD international conference on knowledge discovery and

data mining. 1365–1374.

[88] Chen Yang, Min Lyu, Yongkun Li, Qianqian Zhao, and Yinlong Xu. 2018. SSRW:

a scalable algorithm for estimating graphlet statistics based on random walk. In

International Conference on Database Systems for Advanced Applications. Springer,

272–288.

[89] Guan-Can Yang, Gang Li, Chun-Ya Li, Yun-Hua Zhao, Jing Zhang, Tong Liu,

Dar-Zen Chen, and Mu-Hsuan Huang. 2015. Using the comprehensive patent

citation network (CPC) to evaluate patent value. Scientometrics 105, 3 (2015),

1319–1346.

[90] Hao Yin, Austin R Benson, and Jure Leskovec. 2019. The local closure coefficient:

A new perspective on network clustering. In Proceedings of the Twelfth ACM

International Conference on Web Search and Data Mining. 303–311.

[91] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and

Jure Leskovec. 2018. Hierarchical Graph Representation Learning with Differen-

tiable Pooling. In Advances in Neural Information Processing Systems, S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),

Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/

2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf

[92] Jiaxuan You, JonathanGomes-Selman, Rex Ying, and Jure Leskovec. 2021. Identity-

aware graph neural networks. arXiv preprint arXiv:2101.10320 (2021).

[93] Kangfei Zhao, Jeffrey Xu Yu, Hao Zhang, Qiyan Li, and Yu Rong. 2021. A Learned

Sketch for Subgraph Counting. Proceedings of the 2021 International Conference

on Management of Data (2021).

[94] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed,

and Danai Koutra. 2021. Graph neural networks with heterophily. In Proceedings

of the AAAI Conference on Artificial Intelligence, Vol. 35. 11168–11176.

227

https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://networkrepository.com
https://networkrepository.com
https://proceedings.neurips.cc/paper_files/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf

