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ABSTRACT
Subgraph counting is the problem of counting the occurrences of

a given query graph in a large target graph. Large-scale subgraph

counting is useful in various domains, such as motif analysis for

social network and loop counting for money laundering detection.

Recently, to address the exponential runtime complexity of scalable

subgraph counting, neural methods are proposed. However, existing

approaches fall short in three aspects. Firstly, the subgraph counts

vary from zero to millions for different graphs, posing a much larger

challenge than regular graph regression tasks. Secondly, current

scalable graph neural networks have limited expressive power and

fail to efficiently distinguish graphs for count prediction. Further-

more, existing neural approaches cannot predict query occurrence

positions.

We introduce DeSCo, a scalable neural deep subgraph count-

ing pipeline, designed to accurately predict both the count and

occurrence position of queries on target graphs post single training.

Firstly, DeSCo uses a novel canonical partition and divides the large

target graph into small neighborhood graphs, greatly reducing the

count variation while guaranteeing no missing or double-counting.

Secondly, neighborhood counting uses an expressive subgraph-based

heterogeneous graph neural network to accurately count in each

neighborhood. Finally, gossip propagation propagates neighborhood

counts with learnable gates to harness the inductive biases of mo-

tif counts. DeSCo is evaluated on eight real-world datasets from

various domains. It outperforms state-of-the-art neural methods

with 137× improvement in the mean squared error of count predic-

tion, while maintaining the polynomial runtime complexity. Our

open-source project is at https://github.com/fuvty/DeSCo.
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1 INTRODUCTION
Given a query graph and a target graph, the problem of subgraph

counting is to count the number of patterns, defined as subgraphs of

the target graph, that are graph-isomorphic to the query graph [63].

Subgraph counting is crucial for domains including biology [1,

6, 8, 69, 73], social science [40, 60, 75, 80], risk management [3, 62],

and software analysis [77, 85]. For example, in brain networks, it is

used to identify important functional motifs and understand how

the brain evolves [71]. In social networks, counts of stars, holes, or

paths are used to characterize circles of friends [18].

While being essential in graph and network analysis, subgraph

counting is a #P-complete problem [76]. Due to the computational

complexity, existing exact counting algorithms are restricted to

small query graphs with no more than 5 vertices [2, 56, 59]. The

commonly used VF2 [21] algorithm fails to even count a single

query of a 5-node chain within a week’s time budget on a large

target graph Astro [43] with nineteen thousand nodes.

Luckily, approximate counting of query graphs is sufficient in

most real-world use cases [38, 41, 64]. Heuristic methods can scale

to large targets by substructure sampling, random walk, and color-

based sampling, allowing estimation of the frequency of query

graph occurrences. However, they still cannot scale to large queries.

Very recently, Graph Neural Networks (GNNs) are employed as a

deep learning-based approach to scale the query graphs in subgraph

counting [20, 45, 93]. The target graph and the query graph are

embedded via a GNN, which predicts the motif count through a

regression task.

However, there exist several major challenges with existing

heuristic and GNN approaches: 1) The number of graph structures

and count variation both grow super-exponentially with respect to

the graph size [61, 68], resulting in large approximation error [63].

For different large target graphs, the counts of the same query can

vary from zero to millions, making the task much harder than most
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Figure 1: DeSCoPipeline reduces themean square error (MSE)
of subgraph count prediction with three components: canoni-
cal partition, subgraph-based heterogeneousmessage passing
(SHMP) and gossip propagation. The MSE is evaluated and
averaged on eight real-world datasets.

graph regression tasks [70], which only predict a single-digit num-

ber with a small upper bound. 2) The expressive power of commonly

used message passing GNNs is limited by the Weisfeiler-Lehman

(WL) test [20, 42, 86]. Certain structures are not distinguishable

with these GNNs, let alone counting them, resulting in the same

count prediction for different queries. 3) Furthermore, most existing

approximate heuristic and GNN methods only focus on estimating

the total count of a query in the target graph [15, 16, 20, 45], but

not the occurrence positions of the patterns, as shown in Figure 2.

Yet such position distribution information is crucial in various ap-

plications [10, 26, 35, 74, 90].

Proposed work. To resolve the above challenges, we propose

DeSCo, a GNN-based model that learns to predict both pattern

counts and occurrence positions on any target graph. The main

idea of DeSCo is to leverage the local information of neighborhood

patterns to predict query counts and occurrences in the entire target

graph. DeSCo first uses canonical partition to decompose the target

graph into small neighborhoods. The local information is then

encoded using a GNN with subgraph-based heterogeneous message

passing. Finally, we perform gossip propagation to use inductive

biases to improve counting accuracy over the entire graph. Our

contributions are four-fold.

Canonical partition. Firstly, we propose canonical partition that

divides the problem into subgraph counting for individual neigh-

borhoods. We theoretically prove that no pattern will be double

counted or missed for all neighborhoods. The algorithm allows the

model to make accurate predictions on large target graphs with

high count variation. Furthermore, we can predict the pattern po-

sition distribution for the first time, as shown in Figure 2. In this

citation network, the hotspots represent overlapped linear citation

chains, indicating original publications that motivate multiple fu-

ture directions of incremental contributions [30, 89], which shed

light on the research impact of works in this network.

Subgraph-based heterogeneous message passing. Secondly, we
propose a general approach to enhance the expressive power of

any MPGNNs by encoding the subgraph structure through het-

erogeneous message passing. The message type is determined by

whether the edge presents in a certain subgraph, e.g., a triangle. We

Figure 2: The total count and the position distribution of the
query graph over the CiteSeer Citation Network. The figure
compares between ground truth and DeSCo predictions. The
hotspots are where the 4-chain patterns appear most often
in CiteSeer.

show that this architecture outperforms expressive GNNs, includ-

ing GIN [86] and ID-GNN [92], while maintaining the polynomial

runtime complexity for scalable subgraph counting.

Gossip propagation. We further improve the count prediction

accuracy by utilizing two inductive biases of the counting problem:

homophily and antisymmetry. Real-world graphs share similar pat-

terns among adjacent nodes, as shown in Figure 2. Furthermore,

since canonical count depends on node indices, there exists an-

tisymmetry due to canonical partition. Therefore, we propose a

gossip propagation phase featuring a learnable gate for propagation

to leverage the inductive biases.

Generalization Framework. We propose a generalization frame-

work that uses the carefully designed synthetic dataset to enable

model generalization to different real-world datasets. After training

on the synthetic dataset, the model can directly perform subgraph

counting inference with high accuracy on real-world datasets.

To demonstrate the effectiveness of DeSCo, we compare it against

state-of-the-art GNN-based subgraph counting methods [20, 45, 46],

as well as approximate heuristic method [15, 16] on eight real-

world datasets from various domains. DeSCo achieves 137× mean

square error reduction of count predictions for both small and large

targets, as shown in Figure 1. To the best of our knowledge, it

is also the first approximate method to accurately predict pattern

position distribution as illustrated in Figure 2. DeSCo also maintains

polynomial runtime efficiency, demonstrating orders of magnitude

speedup over the heuristic [15, 16] and exact methods [21, 72].

2 RELATEDWORKS
There has been extensive lines of work for subgraph counting.

Exact counting algorithms. Exact methods generally count sub-

graphs by searching through all possible node combinations and

finding the matching pattern. Early methods usually focus on im-

proving the matching phase [21, 51, 83] Recent approaches empha-

size the importance of pruning the search space and avoiding double

counting [23, 48, 49, 67], which inspires the design our canonical

count objective (Section 4.1). However, exact methods still scale

poorly in terms of query size (often nomore than five nodes) despite

much effort [19, 59].

Approximate heuristic methods. To further scale up the count-

ing problem, approximate counting algorithms sample from the

target graph to estimate pattern counts. Strategies like path sam-

pling [39, 79], random walk [66, 88], substructure sampling [29, 38],
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Figure 3: DeSCo Pipeline in 3 steps. (a) Step 1. Canonical Partition: Given query and target, decompose target into multiple node-
induced subgraphs, i.e., canonical neighborhoods, based on node indices. Each neighborhood contains a canonical node that has
the greatest index in the neighborhood. (b) Step 2. Neighborhood Counting: Predict the canonical counts of each neighborhood
via an expressive GNN, and assign the count of the neighborhood to the corresponding canonical node. Neighborhood counting
is the local count of queries. (c) Step 3. Gossip Propagation: Use GNN prediction results to estimate canonical counts on the
target graph through learnable gates.

and color coding [14–16] are used to narrow the sample space and

provides better error bound. However, large and rare queries are

still hard to find in the vast sample space, leading to large approxi-

mation error [15, 16].

GNN-based approaches. Recently, GNNs have been used to at-

tempt counting large queries. [45, 91] use GNNs to embed the query

and target graph, and predict subgraph counts via embeddings. [20]

theoretically analyzes the expressive power of GNNs for counting

and proposes an expressive GNN architecture. [93] proposes an

active learning scheme for the problem. [46] proposes expensive

edge-to-vertex dual graph transformation to enhance the model ex-

pressive power for subgraph counting. Unfortunately, large target

graphs have extremely complex structures and a high variation of

pattern count, so accurate prediction remains challenging.

3 PRELIMINARY
Let 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ) be a large target graph with vertices 𝑉𝑡 and

edges 𝐸𝑡 . Let 𝐺𝑞 = (𝑉𝑞, 𝐸𝑞) be the query graph of interest. The

subgraph counting problem C(𝐺𝑞,𝐺𝑡 ) is to calculate the size of the

set of patterns P = {𝐺𝑝 |𝐺𝑝 ⊆ 𝐺𝑡 } in the target graph 𝐺𝑡 that are

isomorphic to the query graph 𝐺𝑞 , that is, ∃ bijection 𝑓 : 𝑉𝑝 ↦→ 𝑉𝑞
such that (𝑓 (𝑣), 𝑓 (𝑢)) ∈ 𝐸𝑞 if and only if (𝑣,𝑢) ∈ 𝐸𝑝 , denoted as

𝐺𝑝 � 𝐺𝑞 .

Subgraph counting can be categorized into induced and non-

induced counting [63]. A subgraph 𝐺𝑝 = (𝑉𝑝 , 𝐸𝑝 ) of 𝐺𝑡 is an in-

duced subgraph if it satisfies two conditions: 𝑉𝑝 ⊆ 𝑉𝑡 and for any

two vertices𝑢, 𝑣 ∈ 𝑉𝑝 , they are adjacent in𝐺𝑝 if and only if they are

adjacent in 𝐺𝑡 . This relationship is denoted as 𝐺𝑝 ⊆ 𝐺𝑡 . Without

loss of generality, we focus on the connected, induced subgraph

counting problem, following modern mainstream graph process-

ing frameworks [31, 58] and real-world applications [51, 84]. It

is also possible to obtain non-induced occurrences from induced

ones with a transformation [28]. Our GNN approach can natively

support graphs with node features and edge directions. But in align-

ment with exact and heuristic methods, we use undirected graphs

without node features in experiments to investigate the ability to

capture graph topology.

4 DESCO PIPELINE
In this section, we introduce the pipeline of DeSCo as shown in

Figure 3. To perform subgraph counting, DeSCo first performs

canonical partition to decompose the target graph to many canon-

ical neighborhood graphs. Then, neighborhood counting uses

the subgraph-based heterogeneous GNN to embed the query and

neighborhood graphs and performs a regression task to predict the

canonical count on each neighborhood. Finally, gossip propaga-
tion propagates neighborhood count predictions over the target

graph with learnable gates to further improve counting accuracy.

We will first introduce the model objective before elaborating on

each step.

4.1 Canonical Count Objective
Motivation. For commonly seen node-level tasks such as node

classification, each node is responsible for predicting its own node

value. However, for subgraph counting, since each pattern contains

multiple nodes, it is unclear which node should be responsible for

predicting the pattern’s occurrence. As illustrated in Figure 4, the

ambiguity can lead to missing or double-counting of the motif,

especially for queries with symmetric nodes, e.g. triangle. So we

propose the canonical count objective to eliminate the ambiguity

by assigning a specific canonical node responsible for each pattern.

The canonical node is used to represent the pattern position. The

canonical count is used as the local count prediction objective for

the GNN and gossip propagation.

(b) count 0 triangle
missing

0 triangle1 triangle

1 

triangle

(a) count 3 triangle
double-counting

2

1

0

0 triangle

correct
(c) count 1 triangle

1 

triangle

1 

triangle

0 

triangle

0 

triangle

0 

triangle

Figure 4:When counting, (a) double-counts and (b) misses the
triangle in the neighborhoods due to symmetry. (c) DeSCo
uses the canonical node to break symmetry and correctly
count the triangle. i○ are the node indices.
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canonical count is defined by the number of patterns containing the canonical node in the canonical neighborhood. DeSCo’s
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To break the symmetry, we randomly assign node indices on the

target graph and define the canonical node.

Definition 4.1 (canonical node). Canonical node 𝑣𝑐 is the

node with the largest node index in the pattern.

𝑣𝑐 = max

𝐼
𝑉𝑝 (1)

Based on the index, we assign the count of the k-node pattern

to its canonical node and define canonical count.

Definition 4.2 (canonical count). Canonical count C𝑐 equals
the number of patterns that share the same canonical node.

C𝑐 (𝐺𝑞,𝐺𝑡 , 𝑣𝑐 ) = |{𝐺𝑝 ⊆ 𝐺𝑡 |𝐺𝑝 � 𝐺𝑞, 𝑣𝑐 = max

𝐼
𝑉𝑝 }| (2)

The canonical count C𝑐 (𝐺𝑞,𝐺𝑡 , 𝑣𝑐 ) differs from the regular count

C𝑐 , as it takes an additional variable - a node 𝑣𝑐 from the target

graph. As shown in Figure 4(c), a pattern is only counted by its

canonical node in C𝑐 . So the summation of C𝑐 over all nodes equals
the count of all patterns, C, as stated in Lemma 4.1 and proven in

Appendix A.1.

Lemma 4.1. The subgraph count C of query in target equals the

summation of the canonical count of query in target for all target

nodes.

C(𝐺𝑞,𝐺𝑡 ) =
∑︁
𝑣𝑐 ∈𝑉𝑡

C𝑐 (𝐺𝑞,𝐺𝑡 , 𝑣𝑐 ) (3)

Advantage. By predicting the canonical count of each node, DeSCo
can naturally get the pattern position distribution.

Lemma 4.1 allows the decomposition of the counting problem

into multiple canonical count objectives. We use the following

canonical partition to minimize the overhead for the decomposition.

4.2 Canonical Partition
Motivation. In Lemma 4.1, each canonical count C𝑐 is obtained

with the entire target graph 𝐺𝑡 . In order to overcome the high

computational complexity, we partition the target to reduce the

graph size for the canonical count. We observe that each canonical

count only depends on some local neighborhood structure as shown

in Figure 5(c). So we propose canonical partition to efficiently get

the small neighborhood.

Unique challenges of partition for canonical count. Commonly

used graph partition strategies include cutting edges [5] and tak-

ing d-hop neighborhoods [32]. However, edge-cutting breaks the

pattern structure, leading to incorrect count; D-hop neighborhoods

guarantee correctness, yet are unnecessarily large since patterns

exist in many overlapping neighborhoods.

Thus, we define canonical partition. It neglects the neighborhood

structure that does not influence the canonical count of each node.

Canonical partition uses node indices to filter nodes as illustrated

in Figure 5(a), (b).

Definition 4.3 (canonical partition). Canonical partition

P crops the index-restricted d-hop neighborhood around the center

node from the target graph. D(𝐺𝑡 , 𝑣𝑖 , 𝑣𝑐 ) means the shortest distance

between 𝑣𝑖 and 𝑣𝑐 on 𝐺𝑡 .

P(𝐺𝑡 , 𝑣𝑐 , 𝑑) = 𝐺𝑐 ,

s. t. 𝐺𝑐 ⊆ 𝐺𝑡 ,𝑉𝑐 = {𝑣𝑖 ∈ 𝑉𝑡 |D(𝐺𝑡 , 𝑣𝑖 , 𝑣𝑐 ) ≤ 𝑑, 𝑣𝑖 ≤ 𝑣𝑐 }
(4)

The graph𝐺𝑐 obtained by canonical partition is called the canoni-

cal neighborhood. Canonical neighborhoods can correctly substitute

the target graph in canonical count as proven in Appendix A.2. Thus,

we derive Theorem 1.

Theorem 1. The subgraph count of query in target equals the

summation of the canonical count of query in canonical neighbor-

hoods for all target nodes. Canonical neighborhoods are acquired with

canonical partition P, given any 𝑑 greater than the diameter of the

query.

C(𝐺𝑞,𝐺𝑡 ) =
∑︁
𝑣𝑐 ∈𝑉𝑡

C𝑐 (𝐺𝑞,P(𝐺𝑡 , 𝑣𝑐 , 𝑑), 𝑣𝑐 ),

𝑑 ≥ max

𝑣𝑖 ,𝑣𝑗 ∈𝑉𝑞
D(𝐺𝑞, 𝑣𝑖 , 𝑣 𝑗 )

(5)

In DeSCo, given the target graph 𝐺𝑡 , it iterates over all nodes 𝑣

of the target𝐺𝑡 and divides it into a set of canonical neighborhoods

𝐺𝑣𝑐 with canonical partition. In practice, we set𝑑 as themaximum

221



DeSCo: Towards Generalizable and Scalable Deep Subgraph Counting WSDM ’24, March 4–8, 2024, Merida, Mexico

type Ⅱ

type Ⅰ

Figure 6: Proposed SHMP. Embeddedwith regularMP, graphs
𝐺1 and𝐺2 are indistinguishable.While embeddedwith SHMP,
𝐺2 is successfully distinguished with six type II node embed-
dings, demonstrating better expressive power of SHMP.

diameter of query graphs to meet the requirements of Theorem.1.

See Appendix A.3 for the implementation of P(𝐺𝑡 , 𝑣𝑐 , 𝑑).
Advantage. Canonical partition dramatically reduces the worst and

average complexity of the subgraph counting problem by a factor of

1/10
70

and 1/10
11
, thanks to the sparse nature of real-world graphs

(discussed in Appendix A.4). Furthermore, diverse target graphs can

have similar and limited kinds of canonical neighborhoods. So it

boosts the generalization power of DeSCo as shown in Section 5.4.

This divide-and-conquer scheme not only greatly reduces the

complexity of each GNN prediction, but also makes it possible

to predict the count distribution over the entire graph. After the

canonical partition, DeSCo uses the following model to predict the

canonical count for each decomposed neighborhood.

4.3 Neighborhood Counting
After canonical partition, GNNs are used to predict the canonical

count 𝐶𝑐 (𝐺𝑞,𝐺𝑣𝑐 , 𝑣𝑐 ) on any canonical neighborhood 𝐺𝑣𝑐 in the

neighborhood counting stage. The canonical neighborhood and

the query are separately embedded using GNNs. The embeddings

are passed to a multilayer perceptron to predict the canonical count.

Motivation. Previous work [20] shows message passing (MP)

GNNs confuse certain graph structures and harm the counting accu-

racy. To enhance GNN’s expressive power while remaining scalable,

we propose the Subgraph-based Heterogeneous Message Passing

(SHMP) framework. Inspired by [52], SHMP incorporates subgraph

information to boost the expressive power. In the meantime, SHMP

avoids using super-node [52] or message permutation [20] that are

computationally expensive during message passing.

Neighborhood counting with SHMP. To embed the input graph,

SHMP uses small subgraph structures to categorize edges into dif-

ferent edge types, and uses different learnable weights for each

edge type.

Definition 4.4 (subgraph-based heterogeneous message

passing). The SHMP computes each node’s representation with equa-

tion 6. Here 𝑘 denotes the layer; 𝛾 denotes the update function; 𝜙𝑘
ℎ

denotes the message function of the h-th edge type; 𝑁ℎ (𝑖) denotes
nodes that connect to node i with the h-th edge type; Agg and Agg

′
are

the permutation invariant aggregation function such as summation.

x(𝑘 )
𝑖

= 𝛾 (𝑘 )
(
x(𝑘−1)
𝑖

,Agg′
ℎ∈𝐻 (𝑀ℎ)

)
𝑀ℎ = Agg𝑗∈𝑁ℎ (𝑖 )

(
𝜙
(𝑘 )
ℎ
(x(𝑘−1)

𝑖
, x(𝑘−1)

𝑗
, e𝑗,𝑖 )

) (6)

Note that MP defined by major GNN frameworks [27, 78] is just

a special case of SHMP if only one edge type is derived with the

subgraph structure. We prove that SHMP can exceed the upper

bound of MP in terms of expressiveness in Appendix B.1.

For example, Figure 6 demonstrates that triangle-based hetero-

geneous message passing has better expressive power. Regular

MPGNNs fail to distinguish different d-regular graphs 𝐺1 and 𝐺2

because of their identical type I messages and embeddings, which is

a common problem of MPGNNs [92]. SHMP, however, can discrim-

inate the two graphs by giving different embeddings. The edges are

first categorized into two edge types based on whether they exist in

any triangles (edges are colored purple if they exist in any triangles).

Since no triangles exist in 𝐺2, all of its nodes still receive type I

messages. While some nodes of 𝐺1 now receive type II messages

with two purple messages and one gray message in each layer. As

a result, the model acquires not only the adjacency information be-

tween the message sender and receiver, but also information among

their neighbors. Such subgraph structural information improves

expressiveness by incorporating high-order information in both

the query and the target. In DeSCo, the canonical node of the neigh-

borhood is also treated as a special node type in the heterogeneous

message passing.

Advantage. The triangle-based SHMP reduces the typical error of

MPGNNs by 68% as discussed in Appendix B.2, while remaining

polynomial runtime complexity of 𝑂 (𝑉 + 𝐸3/2) as discussed in

Appendix F. The comparisonwith other expressive GNNs are shown

in Table 7 and Appendix B.3.

The summation of the neighborhood counts (the predicted canon-

ical counts of all canonical neighborhoods) can serve as the final

subgraph count prediction. The counts also show the position of

patterns. But to further improve counting accuracy, we pass the

neighborhood counts to the gossip propagation stage.

4.4 Gossip Propagation
Given the count predictions 𝐶𝑐 output by the GNN, DeSCo uses

gossip propagation to improve the prediction quality, enforcing

different homophily and antisymmetry inductive biases for different

queries. Gossip propagation uses another GNN to model the error

of neighborhood count. It uses the predicted 𝐶𝑐 as input, and the

canonical counts 𝐶𝑐 as the supervision for corresponding nodes in

the target graph.

Motivation. To further improve the counting accuracy, we identify

two inductive biases: Homophily and Antisymmetry. 1) Homophily:

Adjacent nodes within graphs share similar graph structures, re-

sulting in analogous canonical counts (Figure 2). This phenomenon,

termed homophily of canonical counts, stands out. 2) Antisymmetry:

Nodes with similar neighborhood structures, per Definition 4.2,

exhibit higher canonical counts for those with larger node indices.

See right part of Figure 3 for an example. Details are in Appendix C.

We observe a negative correlation between Antisymmetry ratio

and Homophily in different queries, as depicted in Figure 14 in

Appendix C. This observation inspires us to learn this relationship

within models.

The edges’ direction in message passing can control the ho-

mophily and antisymmetry properties of the graph.With undirected
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x0.9

x0.1

P=0.9

undirected

for homophily

directed

for antisymmetry

x0.5

x0.5

P=0.5

Figure 7: Proposed learnable gates in the gossip propagation
model balance the influence of homophily and antisymmetry
by controlling message directions.

edges, message propagation is a special low-pass filter [55], en-

hancing the homophily property of the node values. With directed

edges pointing from small-index nodes to large-index nodes, mes-

sage propagation accumulates value in large-index nodes, which

enhances the antisymmetry property.

Gossip propagation with learnable gates. To learn the edge

direction that correctly emphasizes homophily or antisymmetry,

we propose the gossip propagation model as shown in Figure 7. It

multiplies a learnable gate 𝑃 for the message sent from the node

with the smaller index, and 1 − 𝑃 for the reversed one. 𝑃 is learned

from the query embedding. For different queries, 𝑃 ranges from 0

to 1 to balance the influence of homophily and antisymmetry. When

𝑃 → 0.5, messages from the smaller indexed node and the reversed

one are weighed equally. So it simulates undirectedmessage passing

that stress homophily by taking the average of adjacent node values.

When the gate value moves away from 0.5, the message from one

end of the edge is strengthened. For example, when 𝑃 → 1, the node

values only accumulate from nodes with smaller indices to nodes

with larger ones. So that it simulates directed message passing that

stress antisymmetry of the transitive partial order of node indices.

The messages of MPGNNs are multiplied with 𝑔 𝑗𝑖 on both edge

directions. With learnable gates, the model can balance the effects

of homophily and antisymmetry for further performance improve-

ment.

x(𝑘 )
𝑖

= 𝛾 (𝑘 )
(
x(𝑘−1)
𝑖

,Agg𝑗∈𝑁 (𝑖 )𝑔 𝑗𝑖 · 𝜙 (𝑘 )
(
x(𝑘−1)
𝑖

, x(𝑘−1)
𝑗

, e𝑗,𝑖
))

𝑔 𝑗𝑖 =

{
𝑃 𝑣 𝑗 ≤ 𝑣𝑖

1 − 𝑃 𝑣 𝑗 > 𝑣𝑖

(7)

Final count prediction. The neighborhood count with gossip

propagation is a more accurate estimation of the canonical count.

The summation of the neighborhood counts is the unbiased esti-

mation of subgraph count on the whole target graph as Theorem 1

states.

5 EXPERIMENTS
We compare the performance of DeSCo with state-of-the-art neural

subgraph counting methods, as well as the approximate heuris-

tic method. Our evaluation showcases the scalability and gener-

alization capabilities of DeSCo across diverse and larger target

datasets, contrasting with prior neural methods that mostly focused

Dataset #graphs Avg. #nodes Avg. #edges

Synthetic 1827 134.91 381.58

MUTAG 188 17.93 19.79

COX2 467 41.22 43.45

ENZYMES 600 32.63 62.14

IMDB-BINARY 1000 19.77 96.53

MSRC-21 563 77.52 198.32

FIRSTMM-DB 41 1.3K 3.0K

CiteSeer 1 3.3K 4.5K

Cora 1 2.7K 5.4K

Table 1: Graph statistics of datasets used in experiments.

on smaller datasets. We also demonstrate the runtime advantage of

DeSCo compared to recent exact and approximate heuristic meth-

ods. Extensive ablation studies further show the benefit of each

component of DeSCo.

5.1 Experimental Setup
Datasets. Compared with previous neural methods, our evalua-

tion extends to larger datasets across various domains, such as

chemistry (MUTAG [22], COX2 [65]), biology (ENZYMES [13]),

social networks (IMDB-BINARY [87]), computer vision (MSRC-21,

FIRSTMM-DB [53]), and citation networks (CiteSeer, Cora [50]). A

synthetic dataset, representing mixed graph characteristics, is also

included (Table 1). Additional dataset details are in Appendix D.

Generalization framework. Our framework, trained on the Syn-

thetic dataset with standard queries (size 3 − 5), enables subgraph

counting across diverse datasets and graph.

Baselines. DeSCo is compared with SOTA subgraph counting

GNNs: LRP [20], DIAMNet [45], DMPNN [46], the heuristic MO-

TIVO [15], and exact methods VF2 [21] and IMSM [72]. Optimal

configurations for each method are detailed in Appendix D.4 and F.

Evaluation metric. Evaluation utilizes mean square error (MSE)

and mean absolute error (MAE) for subgraph count predictions,

with MSE normalized by ground truth variance [20].

5.2 Neural Counting
Subgraph counting. Table 2 highlights DeSCo’s performance in

subgraph count prediction across twenty-nine standard queries of

size 3 − 5. It outperforms the best neural baseline and approximate

heuristic method in normalized MSE by 49.7× and 17.5×, and in

MAE by 8.4× and 4.1× respectively. The model shows robust per-

formance even on dense graphs which is challenging for neural

method, like IMDB-BINARY. Unlike the heuristic method with ex-

ponential complexity, DeSCo maintains linear runtime efficiency.

Additional q-error metric analysis is in Appendix G.1.

Position distribution. DeSCo innovates in pattern position pre-

diction, achieving 3.8 × 10
−3

normalized MSE, further detailed in

Appendix E.2.

5.3 Scalability
Large queries. We analyze 16 frequently appearing queries for

sizes 6 to 13 from ENZYMES (details in Appendix D.2). All models,

except DeSCo (zero-shot), are fine-tuned on larger queries using
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Dataset MUTAG COX2 ENZYMES IMDB-BINARY MSRC-21

Query-Size 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5

normalized MSE

MOTIVO 2.9E-1 6.7E-1 1.2E+0 1.6E-1 3.4E-1 5.9E-1 1.6E-1 1.9E-1 3.0E-1 2.7E-2 3.9E-2 5.0E-2 4.8E-2 7.2E-2 9.5E-2

LRP 1.5E-1 2.7E-1 3.5E-1 1.4E-1 2.9E-2 1.1E-1 8.5E-1 5.4E-1 6.2E-1 inf inf inf 2.4E+0 1.4E+0 1.1E+0

DIAMNet 4.1E-1 5.6E-1 4.7E-1 1.1E+0 7.8E-1 7.2E-1 1.4E+0 1.1E+0 1.0E+0 1.1E+0 1.0E+0 1.0E+0 2.7E+0 1.6E+0 1.3E+0

DMPNN 6.1E+2 6.6E+2 3.0E+2 2.6E+3 2.4E+3 3.0E+3 2.9E+3 1.4E+3 1.2E+3 2.1E+4 1.3E+2 1.4E+2 1.1E+4 1.3E+3 4.1E+2

DeSCo 2.2E-3 7.5E-4 6.0E-3 6.6E-4 6.3E-4 4.9E-3 5.4E-3 5.9E-2 5.3E-2 8.5E-3 2.1E-1 4.5E-1 2.5E-3 3.8E-3 8.7E-2

MAE

MOTIVO 4.9E+0 5.1E+0 3.3E+0 8.3E+0 9.4E+0 7.3E+0 1.7E+1 2.3E+1 2.6E+1 4.7E+1 1.6E+2 6.1E+2 4.1E+1 9.5E+1 1.7E+2

LRP 3.8E+0 5.1E+0 4.5E+0 9.5E+0 4.0E+0 6.3E+0 4.3E+1 4.0E+1 3.7E+1 inf inf inf 3.2E+2 4.6E+2 5.9E+2

DIAMNet 8.3E+0 7.9E+0 4.2E+0 3.0E+1 1.7E+1 1.2E+1 5.4E+1 5.1E+1 4.0E+1 2.9E+2 8.3E+2 2.6E+3 3.4E+2 4.9E+2 6.3E+2

DMPNN 6.8E+2 6.9E+2 2.4E+2 3.6E+3 4.3E+3 3.8E+3 4.8E+3 5.8E+3 6.0E+3 1.7E+5 2.2E+5 2.8E+5 3.4E+4 4.6E+4 5.7E+4

DeSCo 5.0E-1 1.8E-1 2.9E-1 6.1E-1 4.4E-1 7.7E-1 3.6E+0 1.1E+1 9.9E+0 2.4E+1 3.0E+2 1.6E+3 1.0E+1 2.5E+1 1.3E+2

Table 2: Normalized MSE and MAE performance of approximate heuristic and neural methods on subgraph counting of
twenty-nine standard queries.
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Figure 8: The accumulative distributions of normalized square error of large queries (size up to 13) on three target datasets.
The x-axis is clipped at 5. Given any square error tolerance bound (x-axis), DeSCo has the highest percentage of predictions
that meet the bound (y-axis). DeSCo(zero-shot) generalizes to unseen queries with competitive performance over specifically
trained baselines.

the synthetic dataset. DeSCo (zero-shot) demonstrates its capabil-

ity to generalize to unseen queries. The square error distribution

for each query-target pair is in Figure 8, with numeric results in

Appendix G.2.

Large target. In testing on large target graphs (Table 3), DeSCo

surpasses other neural methods, handling up to 3.8×10
6
and 3.3×10

7

ground truth counts on CiteSeer and Cora, respectively. LRP’s

results, being infinite, are excluded from the table.

5.4 Generalization Ability
Synthetic Dataset. Using the Synthetic dataset, we showcase De-

SCo’s generalization. Real-world graphs’ diversity in structure (Fig-

ure 9 (a)) contrasts with their local substructure similarities (Figure 9

(b)). The synthetic dataset’s coverage of real-world graph charac-

teristics (Figure 9 (c)) confirms DeSCo’s training effectiveness and

generalizability.

Generalization. DeSCo, pre-trained on the Synthetic dataset and

tested on varied real-world datasets, demonstrates superior accu-

racy and generalization compared to models trained on existing

datasets (Table 4). This underscores its robustness across different

domains.

Dataset CiteSeer Cora

Query-Size 3 4 5 3 4 5

normalized MSE

DIAMNet 2.0E+0 1.5E+0 1.2E+0 1.0E+10 3.2E+7 3.7E+4

DMPNN 9.5E+4 2.5E+2 6.8E+1 1.8E+5 1.1E+2 6.7E+1

DeSCo 3.5E-5 9.7E-2 1.6E-1 4.2E-3 2.1E-1 6.3E-2

MAE

DIAMNet 1.1E+4 6.0E+4 3.6E+05 2.1E+9 1.6E+9 8.3E+8

DMPNN 6.1E+6 7.6E+6 8.7E+6 1.8E+7 2.4E+7 3.0E+7

DeSCo 6.0E+1 1.2E+4 1.1E+5 1.3E+3 7.3E+4 5.4E+5

Table 3: Normalized MSE and MAE performance of neural
methods on large targets with standard queries.

5.5 Ablation Study
In assessing DeSCo’s components, the ablation study reveals signif-

icant contributions of each part. We demonstrate the MAE results

on three datasets (Figure 10) and the geometric mean of normalized

MSE on eight datasets (Figure 1), supported by numeric data in

Appendix E.
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(a) (b) (c)

Figure 9: Visualization of statistics of diverse graph datasets. The embedding is obtained by projecting the vectors of graph
statistics via t-SNE. (a) Each point represents a graph. (b) Each point represents a canonical neighborhood. (c) Canonical
neighborhoods of the synthetic dataset cover most canonical neighborhoods of real-world graphs in terms of data distribution.

Test-Set MUTAG MSRC-21 FIRSTMM-DB

Query-Size 3 4 5 3 4 5 3 4 5

Existing 6.5E-3 3.4E-3 8.7E-2 1.1E+1 1.9E+0 1.1E+0 1.1E-1 1.1E-1 1.6E-1

Synthetic 2.3E-3 8.4E-4 6.5E-3 2.5E-3 3.8E-3 8.7E-2 2.1E-3 3.6E-2 5.4E-2

Table 4: NormalizedMSE performancewith different training
datasets. When pre-training on existing datasets, MSRC-21
uses MUTAG; CiteSeer uses Cora; FIRSTMM-DB uses Cite-
Seer.
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Figure 10: MAE performance with and without canonical
partition, SHMP and gossip propagation.

Ablation of canonical partition. Removing the canonical par-

tition and training DeSCo for subgraph count on whole targets

(like other neural baselines) indicates the partition’s vital role in

error reduction and DeSCo’s superiority over existing neural meth-

ods (Figure 1). Canonical partition in DeSCo brings a 1.3 ∗ 10
10×

improvement in normalized MSE and 8.8 ∗ 10
4× in MAE.

Ablation of SHMP. SHMP enhances GraphSAGE’s performance by

transitioning to heterogeneous message passing, using triangles as

the categorizing subgraph (Figure 6). SHMP reduces the normalized

MSE by 27× and MAE by 5.8× over GraphSAGE. Further more,

when compared with expressive GNNs, including GIN and ID-GNN,

SHMP demonstrate a 24× and 14× reduction in normalized MSE,

as well as a 5.3×, 3.9× reduction MAE, as detailed in Table 7.

Ablation of gossip propagation. Comparing direct summation

of neighborhood counts with summation post-gossip propagation

highlights its effectiveness. Gossip propagation further reduces

normalized MSE and MAE by 1.8× and 1.4×, respectively.
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Figure 11: The runtime comparison between exact, heuristic
approximate, neural methods and DeSCo. All tested on the
ENZYMES dataset.

5.6 Runtime Comparison
Figure 11 illustrates the runtime of each method under a four-

minute limit. Exact methods VF2 and IMSM exhibit exponential

runtime increases due to the #P hard nature of subgraph count-

ing. For the approximate heuristic method MOTIVO, exponential

growth mainly stems from its coloring phase. In contrast, neu-

ral methods LRP and DeSCo show polynomial scalability. DeSCo

achieves a 5.3× speedup over LRP, as it avoids heavy node feature

permutations. Further runtime analysis is available in Appendix F.

6 CONCLUSION
We propose DeSCo, a neural network based pipeline for general-

izable and scalable subgraph counting. With canonical partition,

subgraph-based heterogeneous message passing, and gossip propa-

gation, DeSCo accurately and efficiently predicts counts for both

large queries and targets. It demonstrates magnitudes of improve-

ments in mean square error. It additionally provides the important

position distribution of patterns that previous works cannot.
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ETHICAL CONSIDERATIONS
In the realm of graph analysis, DeSCo stands as a fundamental tool

rather than a specific application-driven solution. While the direct

potential for DeSCo to induce negative societal impacts is minimal,

it remains prudent to acknowledge and address potential adverse

outcomes.

Accuracy. Similar to other non-exact counting methods, DeSCo

cannot ensure absolute prediction correctness. Despite thorough

testing on extensive real-world datasets, which has showcased sig-

nificant error reductions and exceptional generalization capabilities,

the potential for inaccurate predictions, especially for outlier graphs,

remains a possibility. Therefore, it’s advisable to exercise caution

and validate basic graph statistics, such as maximum degree, before

applying the DeSCo method.

Privacy. DeSCo introduces a breakthrough in accurately count-

ing large subgraphs, previously unattainable. Moreover, it reveals

the positional distribution of these counts. As subgraph counting

finds applications in recommendation systems, social network anal-

ysis, and other domains, there’s potential for corporations and

governments to glean intelligence that was once inaccessible. This

advancement could inadvertently compromise user privacy if not

subjected to proper oversight. To mitigate this, it’s essential to

consider enforcing relevant regulations should corresponding tech-

nologies be developed.
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