
CLAP: Locality Aware and Parallel Triangle
Counting with Content Addressable Memory

Tianyu Fu∗†, Chiyue Wei∗†, Zhenhua Zhu†, Shang Yang†, Zhongming Yu†, Guohao Dai‡, Huazhong Yang†, Yu Wang†
†Dept. of EE, BNRist, Tsinghua University ‡Shanghai Jiao Tong University

daiguohao@sjtu.edu.cn, yu-wang@tsinghua.edu.cn

Abstract—Triangle counting (TC) is one of the most funda-
mental graph analysis tools with a wide range of applications.
Modern triangle counting algorithms traverse the graph and
perform set intersections of neighbor sets to find triangles.
However, existing triangle counting approaches suffer from the
heavy off-chip memory access and set intersection overhead.
Thus, we propose CLAP, the first content addressable memory
(CAM) based triangle counting architecture with the software and
hardware co-optimizations.

To reduce off-chip memory access and the number of set
intersections, we propose the first force-based node index reorder
method. It simultaneously optimizes both data locality and the
computation amount. Compared with random node indices, the
reorder method reduces the off-chip memory access and the set
intersections by 61% and 64%, respectively, while providing 2.19×
end-to-end speedup. To improve the set intersection parallelism,
we propose the first CAM-based triangle counting architecture
under chip area constraints. We enable the high parallel set
intersection by translating it into content search on CAM with
full parallelism. Thus, the time complexity of the set intersection
reduces from O(m+n) or O(n logm) to O(n). Extensive experi-
ments on real-world graphs show that CLAP achieves 39×, 27×,
and 78× speedup over state-of-the-art CPU, GPU, and processing-
in-memory baselines, respectively. The software code is available
at: https://github.com/thu-nics/CLAP-triangle-counting.

Index Terms—triangle counting, content addressable memory

I. INTRODUCTION

Triangle counting (TC) is the problem of searching and
counting triangles in a given graph. Triangle counting is one
of the most fundamental tools for graph analysis. It has
a wide range of applications, including social network [1],
recommendation system [2], biochemistry [3] and so on. As
shown in Figure 2(b), modern triangle counting algorithms use
for-loops to traverse the graph, then use set intersections to find
the common neighbors of two nodes to find the triangle.

However, existing triangle counting approaches suffer from
the following two challenges. Firstly, triangle counting involves
heavy off-chip memory access overhead. Previous work has
shown that the total data transfer volume from the off-chip
memory is 106× larger than the original graph size [4] and
takes up 70% of the total runtime on average [5]. It is mainly
caused by the massive neighbor set data requests and poor
locality of the graph data. We perform triangle counting on
the same graphs in [4] and find that the total neighbor set data
request volume is 135× larger than the original graph size. To
make matters worse, the complexity of the graph means that
the topologically adjacent nodes may not have spatial locality
in memory. Previous work [6] has shown that graph processing
suffers from 30% to 90% cache miss ratio, which poses even
more overhead on off-memory data access.

*: Both authors contributed equally to this work.

Secondly, triangle counting involves heavy set intersection
overhead. Previous work [7] reports that the set intersec-
tion takes 94% of the total computation time. As shown in
Figure 2(b), it is the dominant operation of the inner loop.
On CPUs and GPUs, the merge-list-based [8] and binary-
search-based set intersection [9] methods are commonly used.
Given m-element-set A and n-element-set B, the methods take
O(m+n) or and O(n logm) time complexity to compute A∩B,
respectively. However, these two methods hardly utilize the
Instruction-level Parallelism (ILP) of modern hardware because
of the control dependency of the set intersection. For example,
the binary-search-based set intersection on CPUs needs the
result of the previous comparison to determine the search range
of the next, as shown in Figure 4, thus fully sequential without
ILP.

Luckily, the development of the Content Addressable Mem-
ory (CAM) sheds light on a preferable architecture for TC.
CAM is a special kind of memory that can search the address
of the stored content in one clock cycle. It is widely used in
network routers and data mining [10]. This enlightens us to
harvest the high computing parallelism of CAM to speed up
the set intersections in the TC problem.

In this paper, we propose CLAP, the first CAM-based
Locality Aware and Parallel architecture for the triangle count-
ing problem. CLAP uses software–hardware co-optimizations
to improve the data locality and enables high set intersection
parallelism of the triangle counting problem. The main contri-
butions are summarized as follows.

• To reduce the off-chip memory access and the number of
set intersections, we propose the force-based node index
reorder method. The proposed reorder method simulta-
neously optimizes both data locality and the number of
set intersections. The reorder method reduces the off-chip
memory access and the set intersection by 61% and 64%,
respectively, while providing 2.19× end-to-end speedup.

• To improve the parallelism of set intersections, we propose
the first CAM-based TC architecture. The CAM-based
processing elements (PEs) reduce the time complexity of
set intersections from O(m+ n) or O(n logm) to O(n).

• Experimental results show that, compared with the state-
of-the-art CPU, GPU, and processing-in-memory (PIM)
based TC designs, CLAP can achieve 39×, 27×, and 78×
speedup, respectively.

The following sections are organized as follows. Section II
discusses the background and related work on graph repre-
sentation, TC and CAM. Section III introduces the force-
based reorder method and how it optimizes multiple objectives.
Section IV introduces CLAP’s high parallel CAM-based archi-

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Authorized licensed use limited to: Duke University. Downloaded on December 23,2024 at 21:15:27 UTC from IEEE Xplore. Restrictions apply.

cell

cell

cell

cell

�� ��

����

cell

cell

cell

cell

cell

cell

cell

cell

Bit Line(BL) driver

Search Line(SL) driver

�� ��

Encoder

Hit

Addr

W
ord Line(W

L) driver

��

�� ��
�� ��

�� Compare unit
Cell

Fig. 1. The circuit structure of CAM. It performs parallel content search and
outputs the matched address.

line 1 for va in V:
line 2 for vb in NL(va):
line 3 for vc in NL(va) ∩ NL(vb):
line 4 triangle ++

(a)

(b)

1 2

43

0

Find va

1 2

43

0

Find vb

1 2

43

0

Find vc

1 2

43

0

Fig. 2. (a) TC problem and (b) TC algorithm

tecture. Section V demonstrates extensive experiments and the
paper concludes with Section VI.

II. BACKGROUND AND RELATED WORK

A. Graph Representation

Given a graph G = (V,E), V and E represent the set of
all nodes and edges in the graph. N(v) is the neighbor set of
node v and d(v) = |N(v)| is the degree of it. A unique integer
i(v) ∈ [0, |V |) is assigned to each node as its index. According
to the index, N(v) can be split into two subsets NL(v) =
{u ∈ N(v)|i(u) < i(v)} and NR(v) = {u ∈ N(v)|i(u) ≥
i(v)}. dL(v) and dR(v) are defined as |NL(v)| and |NR(v)|,
respectively. The graph data is commonly represented as the
Compressed Sparse Row (CSR) format [4], which sequentially
stores the adjacent list according to the node indices.

B. Triangle Counting

Figure 2 shows the execution flow of TC. It traverses all
the nodes of the graph. For each node va, it traverses all
the vb in NL(va) and performs the set intersection: each
vc ∈ NL(va) ∩ NL(vb) corresponds to a triangle consists of
va, vb, and vc. Note that NL(v) instead of N(v) is used to
avoid double counting [4]. There has been extensive work
studying the efficient execution of the TC problem with dif-
ferent architectures. The CPU approach GBBS [11] reorders
the node indices to reduce the number of set intersections.
The GPU approach ColGPU [8] utilizes GPU to perform
high parallel TC. The PIM approach TCIM [12] implements
TC on MRAM to eliminate heavy data transfer. The near-
memory-computing (NMC) approach DIMMining [4] designs
the systolic merge array to accelerate set operations. Despite
various optimizations, little work focuses on optimizing both
memory access and the number of set intersections.

C. Content Addressable Memory

Content addressable memory (CAM) [13] is a specialized
memory. Unlike regular memory that can only access content
with address, CAM can also use content to search the data
address in one cycle. The parallel data searchability of CAM
enables a wide range of latency-sensitive applications [10]. The
circuit structure of CAM is shown in Figure 1. CAM consists
of several entries. Each entry of the CAM consists of several
bit cells, which store 1-bit data as normal memory does. Each
bit cell contains a compare unit that activates in parallel. When
the content search request is sent to the search lines, every bit
cell simultaneously compares itself to the corresponding search
line in one cycle and returns the corresponding entry address
if matched.

III. FORCE-BASED REORDER

A. Motivations and Objectives of Reorder

Reorder is a commonly used preprocessing scheme for graph
algorithms [9], [14]. For TC, there exist two main lines of work
that target different objectives.

One objective is to use community-based reorder to optimize
data locality. The graph community refers to a group of nodes
that are densely connected internally. As discussed in Sec-
tion II-A, the node indices determine which nodes’ adjacency
lists are stored together, thus influencing the data locality for
graph traverse. A typical insight is to assign continuous indices
to nodes from the same community, since a node is highly
likely to access its adjacent nodes from the same community
when traversing the graph. Typical example [14] identifies
communities of different sizes and assigns continuous indices
for nodes in them.

The other objective is to use degree-based reorder to optimize
the number of set intersections. According to Figure 2(b), let
the total length of all sets (i.e., NL(va) and NL(vb)) used for
intersection be |X|, we can derive Equation 1. Note that vb ∈
NL(va)⇔ va ∈ NR(vb) by definition.

|X| =
∑
va∈V

∑
vb∈NL(va)

dL(va) + dL(vb)

=
∑
va∈V

∑
vb∈NL(va)

dL(va) +
∑
vb∈V

∑
va∈NR(vb)

dL(vb)

=
∑
va∈V

dL(va)dL(va) +
∑
vb∈V

dR(vb)dL(vb)

=
∑
v∈V

dL(v)d(v)

(1)

Equation 1 reveals that each neighbor set NL(v) is calculated
d(v) times in TC. According to the definition, given a node v,
the smaller index i(v) is, the smaller dL(v) of the node will
be. Though

∑
v∈V dL(v) = |E| is constant, we can adjust the

distribution of node indices so that the weighed summation in
|X| can be lessened. The intuitive is that nodes with higher
degree d should be assigned with smaller node indices. To
minimize the set intersection, previous work [9] proves that the
optimal order is to index the node by the descending rank of

!

!

Authorized licensed use limited to: Duke University. Downloaded on December 23,2024 at 21:15:27 UTC from IEEE Xplore. Restrictions apply.

1

0

3

2

3

4

00

1

...

2

4

3

1 2 4

0 1 2 3 4

Raw
0 1 2 3 4

Iteration 1
0 1 2 3 4

Iteration N

Fc for Data Locality
Same community,
Continuous indices

Fd for Set Intersection
Larger degree,
Smaller index

Gather
Community

Match
Degree Order

Fig. 3. The force-based reorder. The x-coordinates of nodes represent their indices. (1) Degree-based force and community-based force drag the nodes
horizontally to optimize the node indices for different objectives. (2) Each node is horizontally dragged with two forces to be reordered iteratively. Forces on
two typical nodes are shown. The reordered graph better confirms both objectives than the raw graph.

the node degree. Note that for the nodes with the same degree,
their ranks are random. So we use R+(v) and R−(v) to denote
the largest and smallest degree rank of v, which is the range
of its optimal index.

However, to the best of our knowledge, no previous work
simultaneously optimizes both data locality and the number of
set intersections. The single-objective optimization causes the
shortcoming of the other. For example, though [14] achieves
38% less cache miss ratio than [9], it requires 2.57× set
intersections, resulting in 49% more off-chip memory access.

B. Force Design and Reorder Scheme

We propose the force-based reorder method. It abstracts
different objectives as different forces dragging each node
towards its optimal position. As shown in Figure 3, the nodes
of the raw graph are shown on a plane, where the x-coordinate
indicates the node’s index. The community-based force and the
degree-based force are defined to optimize data locality and
the number of set intersections respectively. When reordering,
the nodes are dragged by these horizontal forces to move and
reorder iteratively.

The design of forces follows the same principles discussed in
Section III-A. To optimize locality, we design the community-
based force Fc. Each node of the community C has a force
Fc pointing towards the center of the community, dragging
nodes to gather for continuous indices. The magnitude of
Fc is proportional to the distance between the node and the
community center, as shown in Equation 2.

Fc(v, C) = i(v)− 1

|C|
∑
vc∈C

i(vc) (2)

To optimize the number of set intersections, we design the
degree-based force Fd. Each node v has the force Fd dragging it
towards the margin of its optimal index range [R−(v), R+(v)],
as discussed in Section III-A.

Fd(v) =

R+(v)− i(v), if i(v) > R+(v)

R−(v)− i(v), if i(v) < R−(v)

0, otherwise
(3)

When reordering, all the nodes are dragged horizontally by
∆i = αFc + βFd at each iteration, where hyperparameters
α, β ∈ [0, 1]. Since i′ = i + ∆i may not an integer, the
new indices i′ is further quantized by the index rank: for
i′0 ≤ i′1 ≤ . . . , let [i′0, i

′
1, . . .] → [0, 1, . . .]. The Fc and Fd

TABLE I
THE DRAM ACCESS AND SET INTERSECTION DATA VOLUME COMPARISON

DRAM access(B) Number of set intersections

[14] [9] Ours [14] [9] Ours

MC 2.1E+8 2.2E+8 2.1E+8 8.0E+7 5.5E+7 5.5E+7
PT 1.1E+9 2.3E+9 1.7E+9 3.4E+8 2.0E+8 2.0E+8
YT 5.1E+9 3.7E+8 3.5E+8 1.1E+9 7.8E+7 8.5E+7

are updated at each iteration. Figure 3 shows how nodes are
gradually reordered by two forces, so that the nodes in the same
community tend to have continuous indices, while the large-
degree nodes tend to have smaller indices. The force-based
reorder achieves both better locality and a minimum number
of set intersections.

Hyperparameters α and β allow the balance of both objec-
tives. According to Equation 1, a dataset is sensitive to degree-
based order when the degrees are unevenly distributed. We use
the normalized standard deviation of degree σn to choose the
hyperparameters, where σn =

√∑
vi∈V (d(v)− d̄)2/|V |/d̄.

The runtime complexity of the force-based reorder with I
iteration is O(I|V | log |V |+ |E|), where I = 30 is empirically
good enough and used throughout this paper. Compared with
the O(E3/2) complexity of TC, the complexity of the reorder
preprocessing is acceptable.

To exploit the benefit of our force-based reorder, we com-
pare the number of set intersections, and the DRAM access
volume with those of the single-objective reorder methods. As
shown in Table I, the force-based reorder achieves comparable
performance on the respective focus of the two methods, while
making up for the shortcomings. The end-to-end performance
gain is further analyzed in Section V-C.

IV. CAM-BASED ARCHITECTURE DESIGN

A. CAM-based Set Intersection

The set intersection is the key operation for TC. Thus,
we propose the CAM-based set intersection to improve its
parallelism. Figure 4 shows an example of the binary-search-
based intersection used by previous work [8], and our proposed
CAM-based intersection. A and B have m and n elements
respectively. Both methods search each element of B in A
to perform A ∩ B. The binary search takes O(log2 m) time
complexity and requires constant data readout from memory.
The CAM-based method stores all the elements of A as CAM
entries and puts the element of B on CAM’s search line. CAM

!

!

Authorized licensed use limited to: Duke University. Downloaded on December 23,2024 at 21:15:27 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Workflow of CLAP’s PE
Input: undirected graph G(V,E), N , M
Output: num triangle

1 G(V,E) ← reorder(G(V,E));
2 num triangle ← 0;
3 foreach (t(va),vb) ∈ PE.CAM do
4 N(vb) ← PE.cache.read neigh(vb)
5 foreach vc ∈ N(vb) do
6 s ← (t(va),vc);

// check whether vc ∈ NL(vb)
7 if s ∈ PE.CAM then
8 num triangle ← num triangle + 1;
9 end

10 end
11 end

performs the full parallel search in all elements of A in one
clock cycle. Thus, the complexity reduces from O(n logm) (or
O(m+ n) for merge-based-intersection [4]) to O(n).

B. Architecture Overview

As shown in Figure 2(b), the TC algorithm includes two
main operations: the for-loop based graph traverse and the
neighbor set intersection. We design the CAM-based processing
element (PE) as its fundamental building block to optimize both
operations. Each PE contains K CAM entries. CLAP utilizes
both the inter-PE parallelism for graph traverse and the intra-PE
parallelism for set intersections.

CLAP’s architecture overview is shown in Figure 5. CLAP
follows the NMC scheme of previous work [4]. We use M
PEs to construct a processing unit (PU). The PU is placed
inside each DRAM rank. The memory control unit of the PU
sequentially handles the data requests of the PEs and fetches the
corresponding data from the DRAM rank. N PUs and DRAM
ranks form the whole system.

C. Inter-PE Parallelism for Graph Traverse

The main challenge for inter-PE parallelism is to minimize
the interference between different PEs. Previous work [6] shows
that using 8-job concurrent graph processing only brings 40%
runtime gain. The drawback is mainly because of the interfer-
ence of different jobs, e.g., cache interference. Thus, we design
all the PEs to be independent and operate by themselves to

Search
O(1)

Set A

2

…

Read
Binary-search-based

Intersect
A ∩ B

CAM
Set B

2
CAM-based

3
2
1
0

7
5
4

=2 ?
=2 ?
=2 ?
=2 ?
=2 ?
=2 ?
=2 ?

Read & Compare
O(log2m)

2

3
2
1
0

7
5
4 3≥2 ?

1≥2 ?

2≥2 ?

2=2 ?

Y N Y

Memory
Set B

Fig. 4. The binary-search-based and CAM-based set intersection

enable fully parallel computation with minimum interference.
The main observation behind it is that the nested for-loops
starting from different va are completely independent, as shown
in line1 in Figure 2(b).

Under such observation, the whole TC task is first evenly
distributed to each PU based on va. To optimize the load
balance between different PUs, the loop starting from va is
assigned to the mod (va, N)-th PU. The number of rank
N is relatively small, e.g., 16, compared with thousands to
millions of nodes of the graph dataset. So this simple workload
distribution is empirically balance enough.

For each PU, its DRAM device contains a full copy of the
graph data and handles its own va by assigning them to its PEs.
It begins with neighbor loading. The PU assigns the task to a PE
by loading NL(va) to PE’s CAM. Each entry of CAM means
a vb ∈ NL(va). The loading is done until the CAM of this
PE cannot store another NL(va). It benefits from continuous
DRAM device access. Note that a log2(K) bit tag is attached
to every vb to represent the corresponding va. PE then operate-
by-itself to finish the computation between line2 to line4 in
Figure 2(b) as discussed in Section IV-D. Once a PE finishes
its current task, it outputs the counting result and requests for
neighbor loading again. This enables the dynamic scheduling
of PU’s tasks. When all the va in the PU are assigned, the
counting is done and the summation of the count is returned.

In this manner, each PE handles its own va without inter-
ference. Besides, due to the improvement of locality discussed
in Section III, we can use a small cache for each PE while
maintaining a low cache miss ratio, as shown in Section V.
Thus we enable a larger amount of PEs under area constraint,
further improving the inter-PE parallelism.

D. Intra-PE Parallelism for Set Intersections

The main insight for intra-PE parallelism is to translate the
set intersection into a parallel search operation in CAM. Its full
parallel content search ability reduces the O(log n) time binary
search of vc in N(va) to O(1) time as shown in Line 6 of
Algorithm 1.

Figure 5 shows the architecture of each PE and how it works
to find the triangles. Note that vbs, or N(va)s have been loaded
to CAM as discussed in Section IV-C. The PE goes through
the 1⃝ to 4⃝ step pipeline to check the existence of a potential
triangle according to the loaded data. Each step corresponds to
an operation in Figure 2(b). The CAM acts as both the memory
and the computing unit to enable high parallel set intersections.

In step 1⃝, the CAM acts as a regular memory to sequentially
read the content of an entry: the tag of va (t(va)) and one
neighbor of it vb. The control unit keeps track of the current
entry position. It starts with the first entry and moves forward
by one entry for each cycle. In step 2⃝, vb is passed to the
Fetcher to get NL(vb). The Fetcher decodes vb to the
addresses of its neighbor and tries to fetch NL(vb) from cache.
If cache misses, a data request will be sent to the memory
control unit of PU to fetch the data from the DRAM Device
in the rank. In step 3⃝, the each fetched vc ∈ NL(vb) is
concatenated with the tag t(va) from step 1⃝ to form the search
word s in Algorithm 1. s is passed to the search lines of CAM

!

!

Authorized licensed use limited to: Duke University. Downloaded on December 23,2024 at 21:15:27 UTC from IEEE Xplore. Restrictions apply.

PU
CLAP

DRAM
device

M

CAM

31

20
10

40

41
… I/O

in
te

rf
a

ce

…

search line

tag t(va) neighbor vb

decodercache (for neighbor)

ctrl

③
t(

v a
),

v c

②NL(Vb) Fetcher

① t(va),vb

NL(Va)

④ 1/0
cnt

NL(Vb)

PE count

m
e

m
ct

rlPEPEPEPE

Fig. 5. The CLAP architecture Overview and the main PE pipeline. CLAP
places a processing unit (PU) in each DRAM Rank. Each PU consists of M
processing elements (PEs). PE goes through the pipeline of: 1⃝ get node vb; 2⃝
fetch neighbor NL(vb); 3⃝ for each vc ∈ NL(vb), search vc in NL(va)(with
tag t(va)); 4⃝ accumulate count by 1 if matches.

and is compared with every entry in the CAM within one
clock cycle. Note that CAM’s parallel search ability reduces
the O(log n) time binary search of vc in N(va) to O(1) time.
Finally in step 4⃝, if vc from step 3⃝ matches any elements of
N(va), a valid signal is generated to add the counter by one.
Step 3⃝ and 4⃝ continues for n = |NL(vb)| cycles until all vc
are processed. Under such design, we complete the intersection
NL(va) ∩ NL(vb) and the time complexity is reduced from
O(m + n) (the merge-based intersection) or O(n logm) to
O(n). The next round continues with step 1⃝ for the next va.

Recall that the mentioned workflow is fully pipelined, and
the CAM unit is well-utilized to act as both the memory and the
parallel computing unit. This enables the processing-in-CAM
scheme with high intra-PE parallelism.

V. EXPERIMENTS

A. Experimental Setup

1) CLAP setup: Table II shows the configuration of CLAP.
We use 15 small PUs for the most nodes, and one large PU
for the few (< 0.1%) nodes with dL > 512. We simulate the
end-to-end performance with: (1) In-house behavioral level TC
simulator to emulate the computation of CLAP and generate
the memory access trace. (2) The cache simulator [4] for
cache behavior and CACTI [15] in 32nm technology for area
and energy. (3) Ramulator [16] for DRAM latency. (4) The
28nm CAM at 400MHz [17] for CAM metrics. (5) Synopsys
Design Compiler for the peripheral circuits under TSMC 65nm
technology and is scaled to 32nm by [18].

2) Existing TC designs: GBBS [11] implements TC on
CPUs. We evaluate GBBS on a machine with two Intel(R)
Xeon(R) Gold 6226R CPUs with 64 threads. ColGPU [8] is
a CPU and GPU collaborated TC system that runs on an IBM
Minsky machine. TCIM [12] implements TC algorithm with
a 16 MB MRAM computation array and a single-core CPU.
DIMMining [4] uses 32 NMC module with 16 DRAM rank
to perform TC.

TABLE II
CLAP CONFIGURATION

Software Configuration

Value of σn σn > 1.2 σn ≤ 1.2
Value of α / β 0.10 / 0.90 0.99 / 0.01

Hardware Configuration

DRAM capacity / #Ranks 64GB / 16
DDR4 configuration 4Gb x8 2400R
DRAM frequency 1200MHz

PU Frequency 400MHz

Type of PU Small Large
#PUs / #PEs per PU 15 / 8 1 / 4
#Entries / Tag bits / Neighbor bits 512 / 9 / 32 1024 / 10 / 32
Cache size per PE 16KB 32KB

TABLE III
INFORMATION OF GRAPH DATASETS

Abbr. #Nodes #Edges #Triangles

P2P PP 8.11K 26.0K 2.35K
Astro AS 18.8K 198K 1.35M
Email-Enron EE 36.7K 184K 727K
Mico MC 96.6K 1.08M 12.5M
RoadNet-PA PA 1.09M 1.54M 67.2K
RoadNet-TX TX 1.38M 1.92M 8.29K
Patents PT 3.77M 16.5M 7.52M
Youtube YT 1.13M 2.99M 3.06M
LiveJournal LJ 4.00M 34.7M 178M

3) Datasets: We evaluate the performance of CLAP on
different real-world datasets: P2P, Astro, LiveJournal, Email-
Enron, RoadNet-PA, RoadNet-TX from [19], Mico from [20],
Patents from [21], and Youtube from [22]. The datasets’ abbre-
viations and statistics are shown in Table III.

B. End-to-end Performance

We compare CLAP with the above state-of-the-art CPU,
GPU, PIM, and NMC TC designs. Table IV shows that our
end-to-end performance achieves 39×, 27×, 78×, and 1.4×
speedup respectively.

C. Benefit of Force-based Reorder

Our reorder technique optimizes both the off-chip memory
access and the number of set intersections. The end-to-end
performance of different orders tested on CPU is shown in
Table V. The preprocessing time is not considered for all
methods. The proposed force-based reorder achieves 1.12×
speedup over the best baseline. Compared with random order,

TABLE IV
COMPARISON OF END-TO-END RUNTIME (SECONDS)

GBBS
[11]

ColGPU
[8]

TCIM
[12]

DIMMining
[4]

CLAP
Ours

PP 4.2E-03 N/A N/A 1.6E-05 1.3E-05
AS 8.0E-03 N/A N/A 2.6E-04 1.8E-04
EE N/A 2.6E-03 2.1E-02 N/A 4.2E-04
MC 2.4E-02 N/A N/A 1.6E-03 1.5E-03
PA N/A 1.5E-02 4.3E-02 N/A 2.2E-04
TX N/A 1.3E-02 5.3E-02 N/A 2.7E-04
PT 3.7E-01 N/A N/A 1.5E-02 1.0E-02
YT 7.5E-02 N/A 9.8E-02 5.2E-03 2.7E-03
LJ 7.3E-01 N/A 2.0E+00 6.9E-02 4.9E-02

Normed 39.10 27.07 78.27 1.40 1.00

!

!

Authorized licensed use limited to: Duke University. Downloaded on December 23,2024 at 21:15:27 UTC from IEEE Xplore. Restrictions apply.

0.0
0.2
0.4
0.6
0.8
1.0

PP AS MC PT YT LJ

D
R

A
M

 a
cc

e
ss

Random order Force-based order

0.0
0.2
0.4
0.6
0.8
1.0

PP AS MC PT YT LJ

se
t i

n
te

rs
e

ct
io

n

Fig. 6. DRAM access volume and the number of set intersections normalized
by random order

100

150

200

250

300

16 32 64 128 256

D
R

A
M

 a
cc

e
ss

 (
kB

)

Cache size (kB)

Force-based order
Random order

16x cache size

1.4x DRAM access

Fig. 7. DRAM access of one PE changes with cache size in different order

force-based order reduces the number of set intersection and
DRAM access volume by 61% and 64%, respectively, and the
result is shown in Figure 6.

Furthermore, since triangle is the most basic graph substruc-
ture, the reordered graph also benefits other subgraph counting
algorithms. We use DIMMining’s software to test the general
benefit of the force-based reorder on CPU. Experiments on
the same graphs in Table V show that the force-based reorder
achieves 1.89×, 1.49×, and 1.09× speedup over the random,
community-based [14], and degree-based [9] order for four-
clique counting, respectively. It also achieves 1.82×, 1.49×,
and 1.06× speedup for five-clique counting, respectively.

D. Area and Power Analysis

Thanks to the locality improvement of the reorder method,
we can use a smaller cache for our CAM-based PE to reduce
area and energy overhead while maintaining a low DRAM
access number. Figure 7 shows that through the force-based
reorder, 16kB cache requires less DRAM access than 256kB
cache in random order when counting triangles on dataset
Astro. The area and power of CLAP are shown in Table VI.
CLAP uses 32% less area and 2% less energy than DIMMining.

VI. CONCLUSION

In this work, we propose CLAP, a Content addressable
memory based Locality Aware and Parallel triangle counting
architecture. For the software, we propose the force-based
reorder method to optimize data locality and the number of set
intersections simultaneously. Force-based reorder reduces the
amount of off-chip memory access and the number of set in-
tersections by 61% and 64% respectively. For the hardware, we

TABLE V
END-TO-END RUNTIME (SECONDS) COMPARISON OF REORDER STRATEGIES

ON DIFFERENT DATASETS.

Random Comm-based [14] Degree-based [9] Ours

PP 2.22E-3 2.30E-3 1.57E-3 1.56E-3
AS 4.44E-2 4.01E-2 2.86E-2 2.81E-2
MC 3.47E-1 2.37E-1 2.24E-1 2.24E-1
PT 4.14E+0 2.18E+0 3.30E+0 1.92E+0
YT 2.82E+0 2.54E+0 3.84E-1 3.75E-1
LJ 1.94E+1 1.32E+1 1.11E+1 9.84E+0

Normed 2.19 1.69 1.12 1.00

TABLE VI
AREA AND POWER ANALYSIS OF CLAP

CAM Fetcher Control Total

Area (µm2) 408421 7339418 556046 8303884

Energy (mW) 440.66 2543.83 319.22 3303.72

propose the CAM-based architecture to improve the parallelism
of the set intersection. It utilizes both the intra-PE parallel
search ability of CAM and the inter-PE interference-free par-
allel design. It achieves O(n) set intersection time complexity
and 128 fully parallel PE under area constraint. Experiments
show that CLAP’s end-to-end performance exceeds state-of-
the-art CPU, GPU, and PIM baselines by 39×, 27×, and 78×
respectively.

VII. ACKNOWLEDGEMENT

This work was supported by National Natural Science
Foundation of China (No. 62104128, 61832007, U19B2019,
U21B2031), Tsinghua University Initiative Scientific Research
Program, Beijing National Research Center for Information
Science and Technology (BNRist), and Tsinghua EE Xilinx
AI Research Fund.

REFERENCES

[1] C Seshadhri et al. Wedge sampling for computing clustering coefficients
and triangle counts on large graphs. SADM, 2014.

[2] Charalampos E Tsourakakis et al. Spectral counting of triangles
via element-wise sparsification and triangle-based link recommendation.
SNAM, 2011.

[3] Luca Becchetti et al. Efficient semi-streaming algorithms for local triangle
counting in massive graphs. In SIGKDD, 2008.

[4] Guohao Dai et al. Dimmining: pruning-efficient and parallel graph mining
on near-memory-computing. In ISCA, 2022.

[5] Hao Wei et al. Speedup graph processing by graph ordering. In ICMD,
2016.

[6] Yu Zhang et al. Cgraph: A correlations-aware approach for efficient
concurrent iterative graph processing. In USENIX ATC, 2018.

[7] Shuo Han et al. Speeding up set intersections in graph algorithms using
simd instructions. In ICMD, 2018.

[8] Ketan Date et al. Collaborative (cpu+ gpu) algorithms for triangle
counting and truss decomposition on the minsky architecture: Static graph
challenge: Subgraph isomorphism. In HPEC, 2017.

[9] Lin Hu et al. Triangle counting on gpu using fine-grained task distribu-
tion. In ICDEW, 2019.

[10] Kostas Pagiamtzis et al. Content-addressable memory (cam) circuits and
architectures: A tutorial and survey. JSSC, 2006.

[11] Laxman Dhulipala et al. Theoretically efficient parallel graph algorithms
can be fast and scalable. TOPC, 2021.

[12] Xueyan Wang et al. Triangle counting accelerations: From algorithm to
in-memory computing architecture. IEEE TC, 2021.

[13] Robert Karam et al. Emerging trends in design and applications of
memory-based computing and content-addressable memories. Proceed-
ings of the IEEE, 2015.

[14] Junya Arai et al. Rabbit order: Just-in-time parallel reordering for fast
graph analysis. IPDPS, 2016.

[15] Naveen Muralimanohar et al. Cacti 6.0: A tool to model large caches.
HP laboratories, 2009.

[16] Yoongu Kim et al. Ramulator: A fast and extensible dram simulator.
IEEE Computer architecture letters, 2015.

[17] Supreet Jeloka et al. A 28 nm configurable memory (tcam/bcam/sram)
using push-rule 6t bit cell enabling logic-in-memory. JSSC, 2016.

[18] Aaron Stillmaker et al. Scaling equations for the accurate prediction of
cmos device performance from 180 nm to 7 nm. Integration, 2017.

[19] Jure Leskovec et al. Snap datasets: Stanford large network dataset
collection, 2014.

[20] Mohammed Elseidy et al. Grami: Frequent subgraph and pattern mining
in a single large graph. VLDB, 2014.

[21] Bronwyn H Hall et al. The nber patent citation data file: Lessons, insights
and methodological tools, 2001.

[22] Xu Cheng et al. Statistics and social network of youtube videos. In
IWQoS, 2008.

!

!

Authorized licensed use limited to: Duke University. Downloaded on December 23,2024 at 21:15:27 UTC from IEEE Xplore. Restrictions apply.

